Accès libre

Ultrasound targeted microbubble destruction-mediated gene delivery system: application to therapy for ocular disease

À propos de cet article

Citez

1. Singh VK, Tripathi P. Gene therapy in ocular diseases. Indian J Ophthalmol. 2002; 50:173-81.Search in Google Scholar

2. Marshall E. Gene therapy’s growing pains. Science. 1995; 269:1050, 1052-5.10.1126/science.76525527652552Open DOISearch in Google Scholar

3. Felgner PL, Barenholz Y, Behr JP, et al. Nomenclature for synthetic gene delivery systems. Hum Gene Ther. 1997; 8:511-2.10.1089/hum.1997.8.5-5119095402Open DOISearch in Google Scholar

4. Marshall E. Gene therapy death prompts review of adenovirus vector. Science. 1999; 286:2244-5.10.1126/science.286.5448.224410636774Open DOISearch in Google Scholar

5. Hacein-Bey-Abina S, Le Deist F, Carlier F, et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med. 2002; 346:1185-93.10.1056/NEJMoa01261611961146Open DOISearch in Google Scholar

6. Grisham J. Inquiry into gene therapy widens. Nat Biotechnol. 2000; 18:254-5.10.1038/7367310700127Open DOISearch in Google Scholar

7. Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990; 247:1465-8.10.1126/science.16909181690918Open DOISearch in Google Scholar

8. Wolff JA, Ludtke JJ, Acsadi G, Williams P, Jani A. Longterm persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet. 1992; 1: 363-9.10.1093/hmg/1.6.3631301910Open DOISearch in Google Scholar

9. Felgner PL, Gadek TR, Holm M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA. 1987; 84:7413-7.10.1073/pnas.84.21.74132993062823261Open DOISearch in Google Scholar

10. Stechschulte SU, Joussen AM, von Recum HA, et al. Rapid ocular angiogenic control via naked DNA delivery to cornea. Invest Ophthalmol Vis Sci. 2001; 42:1975-9.Search in Google Scholar

11. Hernot S, Klibanov AL. Microbubbles in ultrasoundtriggered drug and gene delivery. Adv Drug Deliv Rev. 2008; 60:1153-66.10.1016/j.addr.2008.03.005272015918486268Open DOISearch in Google Scholar

12. Bekeredjian R, Chen S, Pan W, Grayburn PA, Shohet RV. Effects of ultrasound-targeted microbubble destruction on cardiac gene expression. Ultrasound Med Biol. 2004; 30:539-43.10.1016/j.ultrasmedbio.2003.12.00615121256Open DOISearch in Google Scholar

13. Guo DP, Li XY, Sun P, et al. Ultrasound/microbubble enhances foreign gene expression in ECV304 cells and murine myocardium. Acta Biochim Biophy Sin. 2004; 36:824-31.10.1093/abbs/36.12.824Open DOISearch in Google Scholar

14. Hu YZ, Zhu JA, Jiang YG, Hu B. Ultrasound microbubble contrast agents: application to therapy for peripheral vascular disease. Adv Ther. 2009; 26:425-34.10.1007/s12325-009-0020-yOpen DOISearch in Google Scholar

15. Zhang Q, Wang Z, Ran H, et al. Enhanced gene delivery into skeletal muscles with ultrasound and microbubble techniques. Acad Radiol. 2006; 13:363-7.10.1016/j.acra.2005.11.003Open DOISearch in Google Scholar

16. Wang JF, Wang JB, Chen H, et al. Ultrasound-mediated microbubble destruction enhances gene transfection in pancreatic cancer cells. Adv Ther. 2008; 25:412-21.10.1007/s12325-008-0051-9Open DOISearch in Google Scholar

17. Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol. 1968; 3:356-66.10.1097/00004424-196809000-00011Open DOISearch in Google Scholar

18. Feinstein SB, Ten Cate FJ, Zwehl W, et al. Twodimensional contrast echocardiography: in vitro development and quantitative-analysis of echo contrast agents. J Am Coll Cardiol. 1984; 3:14-20.10.1016/S0735-1097(84)80424-6Open DOISearch in Google Scholar

19. Feinstein SB, Cheirif J, Ten Cate FJ, et al. Safety and efficacy of a new transpulmonary ultrasound contrast agent: initial multicenter clinical-results. J Am Coll Cardiol. 1990; 16:316-24.10.1016/0735-1097(90)90580-IOpen DOISearch in Google Scholar

20. Korpanty G, Grayburn PA, Shohet RV, Brekken RA. Targeting vascular endothelium with avidin microbubbles. Ultrasound Med Biol. 2005; 31:1279-83.10.1016/j.ultrasmedbio.2005.06.001Open DOISearch in Google Scholar

21. Frenkel PA, Chen S, Thai T, Shohet RV, Grayburn PA. DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro. Ultrasound Med Biol. 2002; 28:817-22.10.1016/S0301-5629(02)00518-5Open DOISearch in Google Scholar

22. Lentacker I, De Geest BG, Vandenbroucke RE, et al. Ultrasound-responsive polymer-coated microbubbles that bind and protect DNA. Langmuir. 2006; 22:7273-8.10.1021/la060382816893226Open DOISearch in Google Scholar

23. Porter TR, Xie F. Visually discernible myocardial echocardiographic contrast after intravenous injection of sonicated dextrose albumin microbubbles containing high molecular weight, less soluble gases. J Am Coll Cardiol. 1995; 25:509-15.10.1016/0735-1097(94)00376-2Open DOISearch in Google Scholar

24. Correas JM, Quay SD. EchoGen emulsion: a new ultrasound contrast agent based on phase shift colloids. Clin Radiol. 1996; 51(suppl.1):11-4.Search in Google Scholar

25. Schneider M, Arditi M, Barrau MB, et al. BR1: a new ultrasonographic contrast agent based on sulfur hexafluoride-filled microbubbles. Invest Radiol. 1995; 30:451-5.10.1097/00004424-199508000-00001Open DOISearch in Google Scholar

26. Laing ST, McPherson DD. Cardiovascular therapeutic uses of targeted ultrasound contrast agents. Cardiovasc Res. 2009; 83:626-35.10.1093/cvr/cvp192Open DOISearch in Google Scholar

27. Skyba DM, Price RJ, Linka AZ, Skalak TC, Kaul S. Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue. Circulation. 1998; 98:290-3.10.1161/01.CIR.98.4.290Open DOISearch in Google Scholar

28. Lawrie A, Brisken AF, Francis SE, et al. Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro. Circulation.1999; 99:2617-20.10.1161/01.CIR.99.20.2617Open DOISearch in Google Scholar

29. Ward M, Wu J, Chiu JF. Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents. J Acoust Soc Am. 1999; 105:2951-7.10.1121/1.426908Open DOISearch in Google Scholar

30. Wu J, Ross JP, Chiu JF. Reparable sonoporation generated by microstreaming. J Acoust Soc Am. 2002; 111:1460-4.10.1121/1.1420389Open DOISearch in Google Scholar

31. Tachibana K, Uchida T, Ogawa K, Yamashita N, Tamura K. Induction of cell-membrane porosity by ultrasound. Lancet. 1999; 353:1409.10.1016/S0140-6736(99)01244-1Open DOISearch in Google Scholar

32. Ogawa K, Tachibana K, Uchida T, et al. High-resolution scanning electron microscopic evaluation of cellmembrane porosity by ultrasound. Med Electron Microsc. 2001; 34:249-53.10.1007/s00795010002211956998Open DOISearch in Google Scholar

33. van Wamel A, Bouakaz A, Versluis M, de Jong N. Micromanipulation of endothelial cells: ultrasoundmicrobubble- cell interaction. Ultrasound Med Biol. 2004; 30:1255-8.10.1016/j.ultrasmedbio.2004.07.01515550330Open DOISearch in Google Scholar

34. Miller DL, Gies RA. The interaction of ultrasonic heating and cavitation in vascular bioeffects on mouse intestine. Ultrasound Med Biol. 1998; 24:123-8.10.1016/S0301-5629(97)00209-3Open DOISearch in Google Scholar

35. Farjo R, Skaggs J, Quiambao AB, Cooper MJ, Naash MI. Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS One. 2006; 1:e38.10.1371/journal.pone.0000038Open DOISearch in Google Scholar

36. Martin KR, Quigley HA. Gene therapy for optic nerve disease. Eye. 2004; 18:1049-55.10.1038/sj.eye.6701579Open DOISearch in Google Scholar

37. Zderic V, Clark JI, Martin RW, Vaezy S. Ultrasoundenhanced transcorneal drug delivery. Cornea. 2004; 23: 804-11.10.1097/01.ico.0000134189.33549.ccOpen DOISearch in Google Scholar

38. Zderic V, Clark JI, Vaezy S. Drug delivery into the eye with the use of ultrasound. J Ultrasound Med. 2004; 23:1349-59.10.7863/jum.2004.23.10.1349Open DOISearch in Google Scholar

39. Zderic V, Vaezy S, Martin RW, Clark JI. Ocular drug delivery using 20-kHz ultrasound. Ultrasound Med Biol. 2002; 28:823-9.10.1016/S0301-5629(02)00515-XOpen DOISearch in Google Scholar

40. Sonoda S, Tachibana K, Uchino E, et al. Gene transfer to corneal epithelium and keratocytes mediated by ultrasound with microbubbles. Invest Ophthalmol Vis Sci. 2006; 47:558-64.10.1167/iovs.05-088916431951Open DOISearch in Google Scholar

41. Wu Y, Du LF, Chen YD, Wang HP, Wang F. SonoVue and ultrasound mediated pEGFP-N1 transfection to mouse cornea in vivo study. Chin J Ultrasonogr. 2008; 17:350-3.Search in Google Scholar

42. Yamashita T, Sonoda S, Suzuki R, et al. A novel bubble liposome and ultrasound-mediated gene transfer to ocular surface: RC-1 cells in vitro and conjunctiva in vivo. Exp Eye Res. 2007; 85:741-8.10.1016/j.exer.2007.08.00617889849Search in Google Scholar

43. Li W, Liu S, Ren J, Xiong H, Yan X, Wang Z. Gene transfection to retinal ganglion cells mediated by ultrasound microbubbles in vitro. Acad Radiol. 2009; 16:1086-94.10.1016/j.acra.2009.03.01919541507Open DOISearch in Google Scholar

44. Mori K, Duh E, Gehlbach P, et al. Pigment epitheliumderived factor inhibits retinal and choroidal neovascularization. J Cell Physiol. 2001; 188:253-63.10.1002/jcp.111411424092Open DOISearch in Google Scholar

45. Duh EJ, Yang HS, Suzuma I, et al. Pigment epitheliumderived factor suppresses ischemia-induced retinal neovascularization and VEGF induced migration and growth. Invest Ophthalmol Vis Sci. 2002; 43:821-9.Search in Google Scholar

46. Lai CC, Wu WC, Chen SL, et al. Suppression of choroidal neovascularization by adenoassociated virus vector expressing angiostatin. Invest Ophthalmol Vis Sci. 2001; 42:2401-7.Search in Google Scholar

47. Takahashi T, Nakamura T, Hayashi A, et al. Inhibition of experimental choroidal neovascularization y overexpression of tissue inhibitor of metalloproteinases-3 in retinal pigment epithelium cells. Am J Ophthalmol. 2000; 130:774-81.10.1016/S0002-9394(00)00772-8Open DOISearch in Google Scholar

48. Zhou XY, Liao Q, Pu YM, et al. Ultrasound-mediated microbubble delivery of pigment epithelium-derived factor gene into retina inhibits choroidal neovascularization. Chin Med J. 2009; 122:2711-7.Search in Google Scholar

49. Zhou XY, Deng X, Wang ZG. Experimental research of transfection efficiency for EGFP plasmid transfected into retinoblastoma cells by ultrasound microbubble intensifier. Chinese J Ultrasound Med. 2006; 122: 564-6.Search in Google Scholar

50. Surace EM, Auricchio A. Versatility of AAV vectors for retinal gene transfer. Vision Res. 2008; 48:353-9.10.1016/j.visres.2007.07.027Open DOISearch in Google Scholar

51. Martin KR, Klein RL, Quigley HA. Gene delivery to the eye using adeno-associated viral vectors. Methods. 2002; 28:267-75.10.1016/S1046-2023(02)00232-3Open DOISearch in Google Scholar

52. Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008; 21:583-93.10.1128/CMR.00008-08257015218854481Open DOISearch in Google Scholar

53. Li HL, Zheng XZ, Wang HP, Li F, Wu Y, Du LF. Ultrasound-targeted microbubble destruction enhances AAV-mediated gene transfection in human RPE cells in vitro and rat retina in vivo. Gene Ther. 2009; 16:1146-53.10.1038/gt.2009.8419571889Open DOISearch in Google Scholar

54. Zheng XZ, Li HL, Du LF, Wang HP, Gu Qing. In vivo and in vitro effects of ultrasound or/and microbubbles on recombinant adeno-associated virus-mediated transgene expression in the retina. Asian Biomed. 2009; 3:497-506.Search in Google Scholar

55. Baum C, Kustikova O, Modlich U, Li Z, Fehse B. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther. 2006; 17:253-63.10.1089/hum.2006.17.25316544975Open DOISearch in Google Scholar

56. Halbert CL, Miller AD, McNamara S, et al. Prevalence of neutralizing antibodies against adeno-associated virus (AAV) types, 5, and 6 in cystic fibrosis and normal populations: Implications for gene therapy using AAV vectors. Hum Gene Ther. 2006; 17:440-7.10.1089/hum.2006.17.440429289016610931Open DOISearch in Google Scholar

57. Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003; 80: 148-58.10.1016/j.ymgme.2003.08.01614567964Open DOISearch in Google Scholar

58. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003; 4:346-58.10.1038/nrg106612728277Open DOISearch in Google Scholar

59. Cai X, Conley S, Naash M. Nanoparticle Applications in Ocular Gene Therapy. Vision Res. 2008; 48:319-24.10.1016/j.visres.2007.07.012242334517825344Open DOISearch in Google Scholar

60. Bejjani RA, BenEzra D, Cohen H, et al. Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis. 2005; 11:124-32.Search in Google Scholar

61. de la Fuente M, Seijo B, Alonso MJ. Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci. 2008; 49:2016-24.10.1167/iovs.07-1077Open DOISearch in Google Scholar

62. Chappell JC, Song J, Burke CW, Klibanov AL, Price RJ. Targeted delivery of nanoparticles bearing fibroblast growth factor-2 by ultrasonic microbubble destruction for therapeutic arteriogenesis. Small. 2008; 4:1769-77.10.1002/smll.200800806Search in Google Scholar

63. Vancraeynest D, Havaux X, Pouleur AC, et al. Myocardial delivery of colloid nanoparticles using ultrasound-targeted microbubble destruction. Eur Heart J. 2006; 27:237-45.10.1093/eurheartj/ehi479Open DOISearch in Google Scholar

64. Lin CY, Liu TM, Chen CY, Huang YL, Huang WK, Sun CK, Chang FH, Lin WL. Quantitative and qualitativeinvestigation into the impact of focused ultrasound with microbubbles on the triggered release of nanoparticles from vasculature in mouse tumors. J Control Release. 2010; 146:291-8.10.1016/j.jconrel.2010.05.033Open DOISearch in Google Scholar

65. Chumakova OV, Liopo AV, Andreev VG, et al. Composition of PLGA and PEI/DNA nanoparticles improves ultrasound-mediated gene delivery in solid tumors in vivo. Cancer Lett. 2008; 261:215-25.10.1016/j.canlet.2007.11.023Open DOISearch in Google Scholar

66. Larina IV, Evers BM, Ashitkov TV, Bartels C, Larin KV, Esenaliev RO. Enhancement of drug delivery in tumors by using interaction of nanoparticles with ultrasound radiation. Technol Cancer Res Treat. 2005; 4:217-26.10.1177/153303460500400211Open DOISearch in Google Scholar

67. Larina IV, Evers BM, Esenaliev RO. Optimal drug and gene delivery in cancer cells by ultrasound-induced cavitation. Anticancer Res. 2005; 25:149-56.Search in Google Scholar

68. Pitkänen L, Pelkonen J, Ruponen M, Rönkkö S, Urtti A. Neural retina limits the nonviral gene transfer to retinal pigment epithelium in an in vitro bovine eye model. AAPS J. 2004; 6:e25.10.1208/aapsj060325Open DOISearch in Google Scholar

69. Peeters L, Lentacker I, Vandenbroucke RE, et al. Can Ultrasound Solve the Transport Barrier of the Neural Retina? Pharm Res. 2008; 25:2657-65.10.1007/s11095-008-9684-2Open DOISearch in Google Scholar

70. Cunha-Vaz J. The blood-ocular barriers. Surv Ophthalmol. 1979; 23:279-96.10.1016/0039-6257(79)90158-9Open DOISearch in Google Scholar

71. Meairs S, Alonso A. Ultrasound, microbubbles and the blood-brain barrier. Prog Biophys Mol Biol. 2007; 93:354-62.10.1016/j.pbiomolbio.2006.07.01916959303Open DOISearch in Google Scholar

72. Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles.Ultrasound Med Biol. 2004; 30: 979-89.10.1016/j.ultrasmedbio.2004.04.01015313330Open DOISearch in Google Scholar

73. Xu Y, Zhou XY, Wang ZG, Li XS. Experimental study on transferring EGFP gene into the retina of rat mediated by microbubbles. Chin J Med Imaging Technol. 2007; 23:188-90.Search in Google Scholar

74. Saito K, Miyake K, McNeil PL, Kato K, Yago K, Sugai N. Plasma membrane disruption underlies injury of the corneal endothelium by ultrasound. Exp Eye Res. 1999; 68:431-7. 10.1006/exer.1998.062610192800Open DOISearch in Google Scholar

eISSN:
1875-855X
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine