Accès libre

Microprocessor-based air plethysmograph for the examination of compressed tissue of limbs

 et   
25 janv. 2023
À propos de cet article

Citez
Télécharger la couverture

Brorson H., Ohlin K., Olsson G., Karlsson M.K., Breast Cancer-Related Chronic Arm Lymphedema Is Associated with Excess Adipose and Muscle Tissue, Lymphat. Res. Biol., 2009, 7 (1), DOI: https://doi.org/10.1089/lrb.2008.1022. Search in Google Scholar

Button V., Principles of Measurement and Transduction of Biomedical Variables, Elsevier Science, 2015. Search in Google Scholar

Christopoulos D.G., Nicolaides A.N., Szendro G., Irvine A.T., Bull M.L., Eastcott H.H., Air-plethysmography and the effect of elastic compression on venous hemodynamics of the leg, J. Vasc. Surg., 1987, 5 (1), 148–159. Search in Google Scholar

Chromy A., Application of High-Resolution 3D Scanning in Medical Volumetry, Int. J. Electron. Telecommun., 2016, 62 (1), https://doi.org/10.1515/eletel-2016-0003 Search in Google Scholar

Comerota A.J., Harada R.N., Eze A.N., Katz M.L., Air plethysmography: a clinical review, Int. Angiol., 1995, 14 (1), 45–52. Search in Google Scholar

Criée C.P., Kardos P., Merget R., Body plethysmography – Its principles and clinical use, Respir. Med., 2011, 105 (7), https://doi.org/10.1016/j.rmed.2011.02.006 Search in Google Scholar

Hargrove J., Zemper E.D., Jannausch M.L., Respiratory Measurement Utilizing a Novel Laser Displacement Technique: Normal Tidal Breathing, Biomed. Instrum. Technol., 2009, 43 (4), https://doi.org/10.2345/0899-8205-43.4.327 Search in Google Scholar

Høyer C., Pavar S., Pedersen B.H., Biurrun M.J., Petersen L.J., Reliability of mercury-in-silastic strain gauge plethysmography curve reading: Influence of clinical clues and observer variation, Scand. J. Clin. Lab. Invest., 2013, 73 (5), https://doi.org/10.3109/00365513.2013.785589 Search in Google Scholar

Kalodiki E., Calahoras L., Delis K.T., Zouzias C.P., Nicolaides A., Air plethysmography: The answer in detecting past deep venous thrombosis, J. Vasc. Surg., 2001, 33 (4), DOI: https://doi.org/10.1067/mva.2001.111743. Search in Google Scholar

Kaulesar Sukul D.M., Hoed P.T., Johansen E.J., Dolder R., Benda E., Direct and indirect methods for the quantification of leg volume: comparison between water displacement volumetry, the disk model method and the frustum sign model method, using the correlation coefficient and the limits of agreement, J. Biomed. Eng., 1993, 15 (6), https://doi.org/10.1016/0141-5425(93)90062-4 Search in Google Scholar

Lee B.B., Bergan J.J., Rockson S.G., Lymphedema: A Concise Compendium of Theory and Practice, Springer-Verlag, London 2011. Search in Google Scholar

Lu Z.R., Theranostics: Fusion of Therapeutics and Diagnostics, Pharm. Res., 2014, 31 (6), https://doi.org/10.1007/s11095-014-1343-1. Search in Google Scholar

Madhavan G., Plethysmography, Biomed. Instrum. Technol., 2005, 39 (5), https://doi.org/10.2345/0899-8205(2005)39 [367:p]2.0.co;2 Search in Google Scholar

Neubauer-Geryk J., Bieniaszewski L., Metody oceny funkcji naczyń – pletyzmografia, Chor. Serca Naczyń, 2009, 6 (4), 184–187. Search in Google Scholar

Nicolaides A.N., Investigation of chronic venous insufficiency a consensus statement, Circulation, 2000, 102 (20), 126–163. Search in Google Scholar

Olszewski W.L., Ćwikła J., Zalewska M., Domaszewska-Szostek A., Gradalski T., Szopińska S., Pathways of lymph and tissue fluid flow during intermittent pneumatic massage of lower limbs with obstructive lymphedema, Lymphology, 2011, 44 (2), 54–64. Search in Google Scholar

Olszewski W.L., Janin P., Ambujam G., Zaleska M., Cakala M., Gradalski T., Tissue Fluid Pressure and Flow during Pneumatic Compression in Lymphedema of Lower Limbs, Lymphat. Res. Biol., 2011, 9 (2), https://doi.org/10.1089/lrb.2009.0025 Search in Google Scholar

Przybyło J., Kańtoch E., Jabłoński M., Augustyniak P., Distant Measurement of Plethysmographic Signal in Various Lighting Conditions Using Configurable Frame-Rate Camera, Metrol. Meas. Syst., 2016, 23 (4), https://doi.org/10.1515/mms-2016-0052 Search in Google Scholar

Ridner S.H., Montgomery L.D., Hepworth J.T., Stewart B.R., Armer J.M., Comparison of upper limb volume measurement techniques and arm symptoms between healthy volunteers and individuals with known lymphedema, Lymphology., 2007, 40 (1), 35–46. Search in Google Scholar

Rumiński J., Reliability of Pulse Measurements in Videoplethysmography, Metrol. Meas. Syst., 2016, 23 (3), https://doi.org/10.1515/mms-2016-0040 Search in Google Scholar

Sakaguchi S., Tomita T., Endo I., Ishitobi K., Functional Segmental Plethysmography: Clinical Application and Results, Angiology, 1970, 21 (11), https://doi.org/10.1177/000331977002101104 Search in Google Scholar

Woolfson P.I., Pullan B.R., Lewis P.S., Blood Flow Measurement From Plethysmographic Pulse Waves Without Venous Occlusion, Biomed. Instrum. Technol., 2003, 37 (1), https://doi.org/10.2345/0899-8205(2003)37 [41:BFMFPP]2.0.CO;2 Search in Google Scholar

Zaleska M., Olszewski W.L., Durlik M., The Effectiveness of Intermittent Pneumatic Compression in Long-Term Therapy of Lymphedema of Lower Limbs, Lymphat. Res. Biol., 2014, 12 (2), https://doi.org/10.1089/lrb.2013.0033 Search in Google Scholar