This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Brorson H., Ohlin K., Olsson G., Karlsson M.K., Breast Cancer-Related Chronic Arm Lymphedema Is Associated with Excess Adipose and Muscle Tissue, Lymphat. Res. Biol., 2009, 7 (1), DOI: https://doi.org/10.1089/lrb.2008.1022.Search in Google Scholar
Button V., Principles of Measurement and Transduction of Biomedical Variables, Elsevier Science, 2015.Search in Google Scholar
Christopoulos D.G., Nicolaides A.N., Szendro G., Irvine A.T., Bull M.L., Eastcott H.H., Air-plethysmography and the effect of elastic compression on venous hemodynamics of the leg, J. Vasc. Surg., 1987, 5 (1), 148–159.Search in Google Scholar
Chromy A., Application of High-Resolution 3D Scanning in Medical Volumetry, Int. J. Electron. Telecommun., 2016, 62 (1), https://doi.org/10.1515/eletel-2016-0003Search in Google Scholar
Comerota A.J., Harada R.N., Eze A.N., Katz M.L., Air plethysmography: a clinical review, Int. Angiol., 1995, 14 (1), 45–52.Search in Google Scholar
Criée C.P., Kardos P., Merget R., Body plethysmography – Its principles and clinical use, Respir. Med., 2011, 105 (7), https://doi.org/10.1016/j.rmed.2011.02.006Search in Google Scholar
Hargrove J., Zemper E.D., Jannausch M.L., Respiratory Measurement Utilizing a Novel Laser Displacement Technique: Normal Tidal Breathing, Biomed. Instrum. Technol., 2009, 43 (4), https://doi.org/10.2345/0899-8205-43.4.327Search in Google Scholar
Høyer C., Pavar S., Pedersen B.H., Biurrun M.J., Petersen L.J., Reliability of mercury-in-silastic strain gauge plethysmography curve reading: Influence of clinical clues and observer variation, Scand. J. Clin. Lab. Invest., 2013, 73 (5), https://doi.org/10.3109/00365513.2013.785589Search in Google Scholar
Kalodiki E., Calahoras L., Delis K.T., Zouzias C.P., Nicolaides A., Air plethysmography: The answer in detecting past deep venous thrombosis, J. Vasc. Surg., 2001, 33 (4), DOI: https://doi.org/10.1067/mva.2001.111743.Search in Google Scholar
Kaulesar Sukul D.M., Hoed P.T., Johansen E.J., Dolder R., Benda E., Direct and indirect methods for the quantification of leg volume: comparison between water displacement volumetry, the disk model method and the frustum sign model method, using the correlation coefficient and the limits of agreement, J. Biomed. Eng., 1993, 15 (6), https://doi.org/10.1016/0141-5425(93)90062-4Search in Google Scholar
Lee B.B., Bergan J.J., Rockson S.G., Lymphedema: A Concise Compendium of Theory and Practice, Springer-Verlag, London 2011.Search in Google Scholar
Lu Z.R., Theranostics: Fusion of Therapeutics and Diagnostics, Pharm. Res., 2014, 31 (6), https://doi.org/10.1007/s11095-014-1343-1.Search in Google Scholar
Madhavan G., Plethysmography, Biomed. Instrum. Technol., 2005, 39 (5), https://doi.org/10.2345/0899-8205(2005)39 [367:p]2.0.co;2Search in Google Scholar
Neubauer-Geryk J., Bieniaszewski L., Metody oceny funkcji naczyń – pletyzmografia, Chor. Serca Naczyń, 2009, 6 (4), 184–187.Search in Google Scholar
Nicolaides A.N., Investigation of chronic venous insufficiency a consensus statement, Circulation, 2000, 102 (20), 126–163.Search in Google Scholar
Olszewski W.L., Ćwikła J., Zalewska M., Domaszewska-Szostek A., Gradalski T., Szopińska S., Pathways of lymph and tissue fluid flow during intermittent pneumatic massage of lower limbs with obstructive lymphedema, Lymphology, 2011, 44 (2), 54–64.Search in Google Scholar
Olszewski W.L., Janin P., Ambujam G., Zaleska M., Cakala M., Gradalski T., Tissue Fluid Pressure and Flow during Pneumatic Compression in Lymphedema of Lower Limbs, Lymphat. Res. Biol., 2011, 9 (2), https://doi.org/10.1089/lrb.2009.0025Search in Google Scholar
Przybyło J., Kańtoch E., Jabłoński M., Augustyniak P., Distant Measurement of Plethysmographic Signal in Various Lighting Conditions Using Configurable Frame-Rate Camera, Metrol. Meas. Syst., 2016, 23 (4), https://doi.org/10.1515/mms-2016-0052Search in Google Scholar
Ridner S.H., Montgomery L.D., Hepworth J.T., Stewart B.R., Armer J.M., Comparison of upper limb volume measurement techniques and arm symptoms between healthy volunteers and individuals with known lymphedema, Lymphology., 2007, 40 (1), 35–46.Search in Google Scholar
Rumiński J., Reliability of Pulse Measurements in Videoplethysmography, Metrol. Meas. Syst., 2016, 23 (3), https://doi.org/10.1515/mms-2016-0040Search in Google Scholar
Sakaguchi S., Tomita T., Endo I., Ishitobi K., Functional Segmental Plethysmography: Clinical Application and Results, Angiology, 1970, 21 (11), https://doi.org/10.1177/000331977002101104Search in Google Scholar
Woolfson P.I., Pullan B.R., Lewis P.S., Blood Flow Measurement From Plethysmographic Pulse Waves Without Venous Occlusion, Biomed. Instrum. Technol., 2003, 37 (1), https://doi.org/10.2345/0899-8205(2003)37 [41:BFMFPP]2.0.CO;2Search in Google Scholar
Zaleska M., Olszewski W.L., Durlik M., The Effectiveness of Intermittent Pneumatic Compression in Long-Term Therapy of Lymphedema of Lower Limbs, Lymphat. Res. Biol., 2014, 12 (2), https://doi.org/10.1089/lrb.2013.0033Search in Google Scholar