This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Adamczuk K., Wolański W., Kaspera W., Analiza przepływu krwi w tętnicach mózgowych, Aktualne Problemy Biomechaniki, 2016, 11, 9–14.Search in Google Scholar
Alimohamadi H., Smith A., Nowak R., Fowler V., Rangamani P., Non-uniform distribution of myosin-mediated forces governs red blood cell membrane curvature through tension modulation, PLOS Comput. Biol., 2020, 16, 1–26.Search in Google Scholar
Beris A.N., Horner J.S., Jariwala S., Armstrong M.J., Wagner N.J., Recent advances in blood rheology: A review, Soft Condensed Matter, 2021, 1–22.Search in Google Scholar
Blake A.S.T., Petley G.W., Deakin C.D., Effects of changes in packed cell volume on the specific heat capacity of blood: implications for studies measuring heat exchange in extracorporeal circuits, Brit. J. Anaesth., 2000, 84, 28–32.Search in Google Scholar
Bowen R.M., Incompressible porous media models by use of the theory of mixtures, Int. J. Eng. Sci., 1980, 18, 1129–1148.Search in Google Scholar
Buradi A., Mahalingam A., Effect of stenosis severity on wall shear stress based hemodynamic descriptors using multiphase mixture theory, J. Appl. Fluid Mech., 2018, 11, 1497–1509.Search in Google Scholar
Cai S., Li H., Zheng F., Kong F., Dao M., Karniadakis G.E., Suresh S., Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease, PNAS, 2021, 118, e2100697118.Search in Google Scholar
Cai Q., Liao W., Xue F., Wang X., Zhou W., Li Y., Zeng W., Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft, Bioact. Mater, 2021, 6, 2557–2568.Search in Google Scholar
Capaccio A., Caserta S., Guido S., Rusciano G., Sasso A., Dissolution of a surfactant-water lamellar phase investigated by combining time-lapse polarized light microscopy and confocal Raman spectroscopy, J. Colloid. Interf. Sci., 2020, 561, 136–146.Search in Google Scholar
Cebeci T., Bradshaw P., Momentum transfer in boundary layers, Hemisphere Publishing Corp., New York, 1977.Search in Google Scholar
Diez-Silva M., Dao M., Han J., Lim C.-T., Suresh S., Shape and biomechanical characteristics of human red blood cells in health and disease, MRS Bull, 2010, 35, 382–388.Search in Google Scholar
El-Aragi G.M., Effect of electrohydraulic discharge on viscosity of human blood, Phys. Res. Int., 2013, ID 203708.Search in Google Scholar
Erdemir A., Guess T.M., Halloran J., Tadepalli S.C., Morrison T.M., Considerations for reporting finite element analysis studies in biomechanics, J. Biomech., 2012, 45, 625–633.Search in Google Scholar
Feng R., Xenos M., Girdhar M., Kang W., Davenport J.W., Deng Y., Bluestein D., Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD, Biomech. Model Mechanobiol., 2012, 11, 119–129.Search in Google Scholar
Flormann D.A.D., Physical characterization of red blood cell aggregation, Biological Physics, Universität des Saarlandes, 2017.Search in Google Scholar
Fraser K.H., Zhang T., Taskin M.E., Griffith B.P., Wu Z.J., A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index, J. Biomech. Eng., 2012, 134, 0810021.Search in Google Scholar
Hayase T., Shirai A., Sugiyama H., Hamaya T., Measurement of frictional characteristics of red blood cells moving on a plate in plasma due to inclined centrifugal force, Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2002, 68, 3386–3391.Search in Google Scholar
Himbert S., Alsop R.J., Rose M., Hertz L., Dhaliwal A., Moran-Mirabal J.M., Verschoor C.P., Bowdish D.M.E., Kaestner L., Wagner C., Rheinstädter M.C., The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes, Sci. Rep., 2017, 7, 39661.Search in Google Scholar
Horner J.S., Armstrong M.J., Wagner N.J., Beris A.N., Investigation of blood rheology under steady and unidirectional large amplitude oscillatory shear, J. Rheol., 2018, 62, 577–591.Search in Google Scholar
Hussmann B., Pfitzner M., Esch T., Frank T., A stochastic particle-particle collision model for dense gas-particle flows implemented in the Lagrangian solver of ANSYS CFX and its validation, 6th International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, July 9–13, 2007, 1–16.Search in Google Scholar
James M.E., Papavassiliou D.V., O’Rear E.A., Use of computational fluid dynamics to analyze blood flow, hemolysis and sublethal damage to red blood cells in a bileaflet artificial heart valve, Fluids, 2019, 4, 1–19.Search in Google Scholar
Jariwala S., Horner J.S., Wagner N.J., Beris A.N., Application of population balance-based thixotropic model to human blood, J. Non-Newton Fluid, 2020, 281, 104294.Search in Google Scholar
Jørgensen L.H., Møller V.S., Revsholm J., Plasma viscosity: Evaluation of a new measuring method using microfluidic chip technology (microViscTM) for clinical use and determination of a new reference range, Ann. Clin. Biochem., 2020, 57, 249–252.Search in Google Scholar
Jung J., Lyczkowski R.W., Panchal Ch.B., Hassanein A., Multiphase hemodynamic simulation of pulsatile flow in a coronary artery, J. Biomech., 2006, 39, 2064–2073.Search in Google Scholar
Karaki W., Rahul, Lopez C.A., Borca-Tasciuc D.A., De S., A continuum thermomechanical model of in vivo electrosurgical heating of hydrated soft biological tissues, Int. J. Heat Mass Tran., 2018, 127, 961–974.Search in Google Scholar
Khanjanpour M.H., Javadi A.A., Experimental and CFD analysis of impact of surface roughness on hydrodynamic performance of a darrieus hydro (DH) turbine, Energies, 2020, 13, 928.Search in Google Scholar
Kim J., Antaki J.F., Massoudi M., Computational study of blood flow in microchannels, J. Comput. Appl. Math., 2016, 292, 174–187.Search in Google Scholar
Kopernik M., Tokarczyk P., Development of multi-phase models of blood flow for medium-sized vessels with stenosis, Acta Bioeng. Biomech., 2019, 21, 63–70.Search in Google Scholar
Kurtyka P., Walke W., Kaczmarek M., Fluid flow analysis using finite element method, determining the effects of the implantable mechanical heart valves on aortic blood flow, Adv. Intell. Syst., 2016, 472, 255–266.Search in Google Scholar
Lain S., Ernst M., Sommerfeld M., Study of colliding particle-pair velocity correlation in homogeneous isotropic turbulence, Appl. Sci., 2020, 10, 9095.Search in Google Scholar
Lee B.-K., Xue S., Nam J., Lim H., Shin S., Determination of the blood viscosity and yield stress with a pressure-scanning capillary hemorheometer using constitutive models, Korea – Aust. Rheol. J., 2011, 23, 1–6.Search in Google Scholar
Lee J., Kim I.G., Oh Y.M., Park C.-H., Kim C.S., Preliminary study for measurement of shear stress and hemocompatibility using commercialized lab on a chip, J. Nanoscie. Nanotechno., 2018, 18, 1123–1126.Search in Google Scholar
Lima R., Ishikawa T., Imai Y., Yamaguchi T., Blood flow behavior in microchannels: past, current and future trends, Single and two-phase flows on chemical and biomedical engineering, Dias R., Martins A.A., Lima R., Mata T.M. (Eds.), Bentham Science, 2012, 513–547.Search in Google Scholar
Liu H., Lan L., Abrigo J., Ip H.L., Soo Y., Zheng D., Wong K.S., Wang D., Shi L., Leung T.W., Leng X., Comparison of newtonian and non-newtonian fluid models in blood flow simulation in patients with intracranial arterial stenosis, Front. Physiol., 2021, https://doi.org/10.3389/fphys.2021.718540Search in Google Scholar
Love A.I.J., Giddings D., Power H., Gas-particle flow modeling: beyond the dilute limit, Procedia Engineer., 2015, 102, 1426–1435.Search in Google Scholar
Mahdavimanesh M., Noghrehabadi A.R., Behbahaninejad M., Ahmadi G., Dehghanian M., Lagrangian particle tracking: model development, Life Sci. J., 2013, 10, 34–41.Search in Google Scholar
Mitchell D., Honnery D., Soria J., Particle relaxation and its influence on the particle image velocimetry cross-correlation function, Exp. Fluids, 2011, 51, 933.Search in Google Scholar
Menconi M.J., Pockwinse S., Owen T.A., Dasse K.A., Stein G.S., Lian J.B., Properties of blood-contacting surfaces of clinically implanted cardiac assist devices: gene expression, matrix composition, and ultrastructural characterization of cellular linings, J. Cell. Biochem., 1995, 57, 557–573.Search in Google Scholar
Menter F., Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J, 2002, 40, 254–266.Search in Google Scholar
Morsi S.A., Alexander A.J., An investigation of particle trajectories in two-phase flow systems, J. Fluid Mech., 1972, 55, 193–208.Search in Google Scholar
Murali C., Nithiarasu P., Red blood cell (RBC) aggregation and its influence on non-Newtonian nature of blood in microvasculature, J. Model Mech. Mat., 2017, 1, 20160157.Search in Google Scholar
Nanda S.P., Basu Mallik B., A non-newtonian two-phase fluid model for blood flow through arteries under stenotic condition, Int. J. Pharm. Bio. Sci., 2012, 2, 237–247.Search in Google Scholar
Pattanapol W., Wakes S.J., Hilton M.J., Dickinson K.J., Modeling of surface roughness for flow over a complex vegetated surface, Int. J. Math. Phys. Eng. Sci., 2008, 2, 18–26.Search in Google Scholar
Picart C., Piau J.-M., Galliard H., Carpentier P., Human blood shear yield stress and its hematocrit dependence, J. Rheol., 1998, 42, 1–12.Search in Google Scholar
Ponder E., The specific heat and the heat of compression of human red cells, sickled red cells, and paracrystalline rat red cells, J. Gen. Physiol., 1955, 38, 575–580.Search in Google Scholar
Prashantha B., Anish S., Discrete-phase modelling of an asymmetric stenosis artery under different Womersley numbers, Ara. J. Sci. Eng., 2019, 44, 1001–1015.Search in Google Scholar
Raffi S., Oz M.C., Seldomridge J.A., Ferris B., Asch A.S., Nachmen R.L., Shapiro F., Rose E.A., Levin H.R., Characterisation of hematopoetic cells arising on the textured surface on left ventriculat assist devices, Ann. Thorac. Surg., 1995, 60, 1627–1632.Search in Google Scholar
Rosentrater K.A., Flores R.A., Physical and rheological properties of slaughterhouse swine blood and blood components, T ASAE, 1997, 40, 683–689.Search in Google Scholar
Sousa P.C., Pinho F.T., Alves M.A., Oliveira M.S.N., A review of hemorheology: Measuring techniques and recent advances, Korea – Aust. Rheol. J., 2016, 28, 1–22.Search in Google Scholar
Sommerfeld M., Huber N., Experimental analysis and modelling of particle-wall collisions, Int. J. Multiphas. Flow, 1999, 25, 1457–1489.Search in Google Scholar
Thyagarajan B., Kumar M.P., Sikachi R.R., Agrawal A., Endocarditis in left ventricular assist device, Intractable Rare Dis. Res., 2016, 5, 177–184.Search in Google Scholar
Vaidya N., Baragona M., Lavezzo V., Maessen R., Veroy K., Simulation study of the cooling effect of blood vessels and blood coagulation in hepatic radiofrequency ablation, Int. J. Hyperther., 2021, 38, 95–104.Search in Google Scholar
Yu Z., Tan J., Wang S., Enhanced discrete phase model for multiphase flow simulation of blood flow with high shear stress, Sci. Prog., 2021, 104, 1–21.Search in Google Scholar
Zahari N.M., Zawawi M.H., Sidek L.M., Mohamad D., Itam Z., Ramli M.Z., Syamsir A., Abas A., Rashid M., Introduction of discrete phase model (DPM) in fluid flow: a review, AIP Conf. Proc., 2030, 2018, 020234-1-6.Search in Google Scholar
Zilla P., Deutsch M., Bezuidenhout D., Davies N.H., Pennel T., Progressive Reinvention or Destination Lost? Half a Century of Cardiovascular Tissue Engineering, Front Cardiovasc. Med., 2020, 7, 1–159.Search in Google Scholar