[
Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences 2(1): 183–202, 10.1137/080716542.
]Search in Google Scholar
[
Bingi, K., Ibrahim, R., Karsiti, M.N., Hassam, S.M. and Harindran, V.R. (2019). Frequency response based curve fitting approximation of fractional-order PID controllers, International Journal of Applied Mathematics and Computer Science 29(2): 311–326, DOI: 10.2478/amcs-2019-0023.
]Ouvrir le DOISearch in Google Scholar
[
Cai, J.F., Osher, S. and Shen, Z. (2009). Convergence of the linearized Bregman iteration for ℓ1 norm minimization, Mathematics of Computation 78(268): 2127–2136.10.1090/S0025-5718-09-02242-X
]Search in Google Scholar
[
Cai, Z., Lan, T. and Zheng, C. (2016). Hierarchical MK splines: Algorithm and applications to data fitting, IEEE Transactions on Multimedia 19(5): 921–934.10.1109/TMM.2016.2640759
]Search in Google Scholar
[
Castaño, D. and Kunoth, A. (2005). Multilevel regularization of wavelet based fitting of scattered data some experiments, Numerical Algorithms 39(1): 81–96.10.1007/s11075-004-3622-0
]Search in Google Scholar
[
Deng, J., Chen, F., Li, X., Hu, C., Yang, Z. and Feng, Y. (2008). Polynomial splines over hierarchical T-meshes, Graphical Models 70(4): 76–86.10.1016/j.gmod.2008.03.001
]Search in Google Scholar
[
Franca, G., Robinson, D. and Vidal, R. (2018). ADMM and accelerated ADMM as continuous dynamical systems, International Conference on Machine Learning, PMLR 2018, Stockholm, Sweden, pp. 1559–1567.
]Search in Google Scholar
[
Giannelli, C., Jüttler, B. and Speleers, H. (2012). THB-splines: The truncated basis for hierarchical splines, Computer Aided Geometric Design 29(7): 485–498.10.1016/j.cagd.2012.03.025
]Search in Google Scholar
[
Hao, Y., Li, C. and Wang, R. (2018). Sparse approximate solution of fitting surface to scattered points by MLASSO model, Science China Mathematics 61(7): 1319–1336, DOI: 10.1007/s11425-016-9087-y.
]Ouvrir le DOISearch in Google Scholar
[
Hirsch, M.W., Smale, S. and Devaney, R.L. (2004). Differential Equations, Dynamical Systems, and an Introduction to Chaos, Academic Press, Amsterdam.
]Search in Google Scholar
[
Johnson, M.J., Shen, Z. and Xu, Y. (2009). Scattered data reconstruction by regularization in B-spline and associated wavelet spaces, Journal of Approximation Theory 159(2): 197–223, DOI: 10.1016/j.jat.2009.02.005.
]Ouvrir le DOISearch in Google Scholar
[
Kraft, D. (1997). Adaptive and linearly independent multilevel B-splines, in Le Méhauté et al. (Eds), Surface Fitting and Multiresolution Methods, Vanderbilt University Press, Nashville, pp. 209–218.
]Search in Google Scholar
[
Lee, S., Wolberg, G. and Shin, S. (1997). Scattered data interpolation with multilevel B-splines, IEEE Transactions on Visualization and Computer Graphics 3(3): 228–244, DOI: 10.1109/2945.620490.
]Ouvrir le DOISearch in Google Scholar
[
Li, C. and Zhong, Y.J. (2019). Piecewise sparse recovery in union of bases, arXiv 1903.01208.
]Search in Google Scholar
[
McCoy, M.B. and Tropp, J.A (2014). Sharp recovery bounds for convex demixing, with applications, Foundations of Computational Mathematics 14(3): 503–567.10.1007/s10208-014-9191-2
]Search in Google Scholar
[
Moon, S. and Ko, K. (2018). A point projection approach for improving the accuracy of the multilevel b-spline approximation, Journal of Computational Design and Engineering 5(2): 173–179.10.1016/j.jcde.2017.10.004
]Search in Google Scholar
[
Ni, Q., Wang, X. and Deng, J. (2019). Modified PHT-splines, Computer Aided Geometric Design 73(1): 37–53.10.1016/j.cagd.2019.07.001
]Search in Google Scholar
[
Parikh, N. and Boyd, S. (2014). Proximal algorithms, Foundations and Trends in Optimization 1(3): 127–239, DOI: 10.1.1.398.7055.
]Ouvrir le DOISearch in Google Scholar
[
Pięta, P. and Szmuc, T. (2021). Applications of rough sets in big data analysis: An overview, International Journal of Applied Mathematics and Computer Science 31(4): 659–683, DOI: 10.34768/amcs-2021-0046.
]Ouvrir le DOISearch in Google Scholar
[
Rockafellar, R.T. (1970). Convex Analysis, Princeton University Press, Princeton.
]Search in Google Scholar
[
Sun, D., Toh, K.C. and Yang, L. (2015). A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints, SIAM Journal on Optimization 25(2): 882–915.10.1137/140964357
]Search in Google Scholar
[
Starck, J.L., Elad, M. and Donoho, D.L. (2005). Image decomposition via the combination of sparse representations and a variational approach, IEEE Transactions on Image Processing 14(10): 1570–1582, DOI: 10.1109/TIP.2005.852206.
]Ouvrir le DOISearch in Google Scholar
[
Wang, F., Cao, W. and Xu, Z. (2018). Convergence of multi-block Bregman ADMM for nonconvex composite problems, Science China Information Sciences 61(12): 1–12.10.1007/s11432-017-9367-6
]Search in Google Scholar
[
Wei, D., Lai, M.J., Reng, Z. and Yin, W. (2017). Parallel multi-block ADMM with o(1/k) convergence, Journal of Scientific Computing 71(2): 712–736.10.1007/s10915-016-0318-2
]Search in Google Scholar
[
Zhang, J. and Luo, Z.Q. (2020). A proximal alternating direction method of multiplier for linearly constrained nonconvex minimization, SIAM Journal on Optimization 30(3): 2272–2302.10.1137/19M1242276
]Search in Google Scholar
[
Zhang, X., Burger, M. and Osher, S. (2011). A unified primal-dual algorithm framework based on Bregman iteration, Journal of Scientific Computing 46(1): 20–46.10.1007/s10915-010-9408-8
]Search in Google Scholar
[
Zhong, Y. and Li, C. (2020). Piecewise sparse recovery via piecewise inverse scale space algorithm with deletion rule, Journal of Computational Mathematics 38(2): 375–394, DOI: 10.4208/jcm.1810-m2017-0233.
]Ouvrir le DOISearch in Google Scholar