[
AlShorman, O., Alkahatni, F., Masadeh, M., Irfan, M., Glowacz, A., Althobiani, F., Kozik, J. and Glowacz, W. (2021). Sounds and acoustic emission-based early fault diagnosis of induction motor: A review study, Advances in Mechanical Engineering 13(2): 1687814021996915.10.1177/1687814021996915
]Search in Google Scholar
[
AlShorman, O., Irfan, M., Saad, N., Zhen, D., Haider, N., Glowacz, A. and AlShorman, A. (2020). A review of artificial intelligence methods for condition monitoring and fault diagnosis of rolling element bearings for induction motor, Shock and Vibration 2020, Article ID: 8843759.10.1155/2020/8843759
]Search in Google Scholar
[
Anis, M.D. (2018). Towards remaining useful life prediction in rotating machine fault prognosis: An exponential degradation model, Condition Monitoring and Diagnosis (CMD), Bentley, Australia, pp. 1–6, DOI: 10.1109/CMD.2018.8535765.
]Ouvrir le DOISearch in Google Scholar
[
Arablouei, R. and Doğançay, K. (2013). Modified quasi-OBE algorithm with improved numerical properties, Signal Processing 93(4): 797–803.10.1016/j.sigpro.2012.09.024
]Search in Google Scholar
[
Butkovic, P. (2010). Max-Linear Systems: Theory and Algorithms, Springer, London.10.1007/978-1-84996-299-5
]Search in Google Scholar
[
Chen, Y., Peng, G., Zhu, Z. and Li, S. (2020). A novel deep learning method based on attention mechanism for bearing remaining useful life prediction, Applied Soft Computing 86: 105–919.10.1016/j.asoc.2019.105919
]Search in Google Scholar
[
Chudnovsky, B.H. (2012). Electrical Power Transmission and Distribution, CRC Press, Boca Raton.
]Search in Google Scholar
[
De Schutter, B. and Van Den Boom, T. (2001). Model predictive control for max-plus-linear discrete event systems, Auto-matica 37(7): 1049–1056.10.1016/S0005-1098(01)00054-1
]Search in Google Scholar
[
Do, N.V., Nguyen, H.D. and Selamat, A. (2018). Knowledge-based model of expert systems using Rela-model, International Journal of Software Engineering and Knowledge Engineering 28(08): 1047–1090.10.1142/S0218194018500304
]Search in Google Scholar
[
Duan, Z., Wu, T., Guo, S., Shao, T., Malekian, R. and Li, Z. (2018). Development and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings: A review, International Journal of Advanced Manufacturing Technology 96(1): 803–819.10.1007/s00170-017-1474-8
]Search in Google Scholar
[
Gao, Z. and Liu, X. (2021). An overview on fault diagnosis, prognosis and resilient control for wind turbine systems, Processes 9(2): 300.10.3390/pr9020300
]Search in Google Scholar
[
Gebraeel, N., Lawley, M., Li, R. and Ryan, J. (2005). Residual-life distributions from component degradation signals: A Bayesian approach, IIE Transactions 37(6): 543–557.10.1080/07408170590929018
]Search in Google Scholar
[
Hamdi, H., Rodrigues, M., Rabaoui, B. and Benhadj Braiek, N. (2021). A fault estimation and fault-tolerant control based sliding mode observer for LPV descriptor systems with time delay, International Journal of Applied Mathematics and Computer Science 31(2): 247–258, DOI: 10.34768/amcs-2021-0017.
]Ouvrir le DOISearch in Google Scholar
[
Jain, T. and Yamé, J. (2020). Health-aware fault-tolerant receding horizon control of wind turbines, Control Engineering Practice 95: 104236.10.1016/j.conengprac.2019.104236
]Search in Google Scholar
[
Kraus, T., Mandour, G.I. and Joachim, D. (2007). Estimating the error bound in QOBE vowel classification, 50th Midwest Symposium on Circuits and Systems, Montreal, Canada, pp. 369–372.
]Search in Google Scholar
[
Li, N., Lei, Y., Lin, J. and Ding, S. (2015). An improved exponential model for predicting remaining useful life of rolling element bearings, IEEE Transactions on Industrial Electronics 62(12): 7762–7773.10.1109/TIE.2015.2455055
]Search in Google Scholar
[
Li, X., Ding, Q. and Sun, J.-Q. (2018). Remaining useful life estimation in prognostics using deep convolution neural networks, Reliability Engineering & System Safety 172: 1–11.10.1016/j.ress.2017.11.021
]Search in Google Scholar
[
Lipiec, B., Mrugalski, M. and Witczak, M. (2021). Health-aware fault-tolerant control of multiple cooperating autonoumous vehicles, IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Luxembourg, Luxembourg, pp. 1–7.
]Search in Google Scholar
[
Liu, Z. and Zhang, L. (2020). A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings, Measurement 149: 107002.10.1016/j.measurement.2019.107002
]Search in Google Scholar
[
Majdzik, P., Akielaszek-Witczak, A., Seybold, L., Stetter, R. and Mrugalska, B. (2016). A fault-tolerant approach to the control of a battery assembly system, Control Engineering Practice 55: 139–148.10.1016/j.conengprac.2016.07.001
]Search in Google Scholar
[
Majdzik, P., Witczak, M., Lipiec, B. and Banaszak, Z. (2021). Integrated fault-tolerant control of assembly and automated guided vehicle-based transportation layers, International Journal of Computer Integrated Manufacturing 35(4–5): 1–18.10.1080/0951192X.2021.1872103
]Search in Google Scholar
[
Mrugalski, M. and Korbicz, J. (2007). Least mean square vs. outer bounding ellipsoid algorithm in confidence estimation of the GMDH neural networks, in B. Beliczyński et al. (Eds), Adaptive and Natural Computing Algorithms, Part 2, Lecture Notes in Computer Science, Vol. 4432, Springer, Berlin, p. 19.
]Search in Google Scholar
[
Nath, A.G., Udmale, S.S. and Singh, S.K. (2021). Role of artificial intelligence in rotor fault diagnosis: A comprehensive review, Artificial Intelligence Review 54(4): 2609–2668.10.1007/s10462-020-09910-w
]Search in Google Scholar
[
Nectoux, P.R.G., Medjaher, K., Ramasso, E., Morello, B., Zerhouni, N. and Varnier., C. (2012). PRONOSTIA: An experimental platform for bearings accelerated life test, IEEE International Conference on Prognostics and Health Management, Denver, USA, pp. 1–8.
]Search in Google Scholar
[
Pazera, M., Buciakowski, M., Witczak, M. and Mrugalski, M. (2020). A quadratic boundedness approach to a neural network-based simultaneous estimation of actuator and sensor faults, Neural Computing & Applications 32(2, SI): 379–389.10.1007/s00521-018-3706-8
]Search in Google Scholar
[
Salazar, J.C., Sanjuan, A., Nejjari, F. and Sarrate, R. (2020). Health-aware and fault-tolerant control of an octorotor UAV system based on actuator reliability, International Journal of Applied Mathematics and Computer Science 30(1): 47–59, DOI: 10.34768/amcs-2020-0004.
]Ouvrir le DOISearch in Google Scholar
[
Seybold, L., Witczak, M., Majdzik, P. and Stetter, R. (2015). Towards robust predictive fault-tolerant control for a battery assembly system, International Journal of Applied Mathematics and Computer Science 25(4): 849–862, DOI: 10.1515/amcs-2015-0061.
]Ouvrir le DOISearch in Google Scholar
[
Singleton, K.R., Strangas, E.G., Cui, H. and Aviyente, S. (2015). Extended Kalman filtering for remaining-useful-life estimation of bearings, IEEE Transactions on Industrial Electronics 62(3): 1781–1790.10.1109/TIE.2014.2336616
]Search in Google Scholar
[
Sun, B., Li, Y., Wang, Z., Ren, Y., Feng, Q., Yang, D., Lu, M. and Chen, X. (2019). Remaining useful life prediction of aviation circular electrical connectors using vibration-induced physical model and particle filtering method, Microelectronics Reliability 92: 114–122.10.1016/j.microrel.2018.11.015
]Search in Google Scholar
[
Sutrisno, E., Oh, H. and Vasan, A.S.S. (2012). Estimation of remaining useful life of ball bearings using data driven methodologies, IEEE Conference on Prognostics and Health Management (PHM), Denver, USA, pp. 1–7.
]Search in Google Scholar
[
Tanaka, K. and Sugeno, M. (1992). Stability analysis and design of fuzzy control systems, Fuzzy Sets and Systems 45(2): 135–156.10.1016/0165-0114(92)90113-I
]Search in Google Scholar
[
Van Den Boom, T. and De Schutter, B. (2006). Modelling and control of discrete event systems using switching max-plus-linear systems, Control Engineering Practice 14(10): 1199–1211.10.1016/j.conengprac.2006.02.006
]Search in Google Scholar
[
Wang, C., Lu, N., Wang, S., Cheng, Y. and Jiang, B. (2018). Dynamic long short-term memory neural-network-based indirect remaining-useful-life prognosis for satellite lithium-ion battery, Applied Sciences 8(11): 2078.10.3390/app8112078
]Search in Google Scholar
[
Wei, Y., Li, Y., Xu, M. and Huang, W. (2019). A review of early fault diagnosis approaches and their applications in rotating machinery, Entropy 21(4): 409, DOI: 10.3390/e21040409.751489833267123
]Ouvrir le DOISearch in Google Scholar
[
Witczak, M. (2014). Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems, Springer, Heidelberg.10.1007/978-3-319-03014-2
]Search in Google Scholar
[
Witczak, M., Lipiec, B., Mrugalski, M., Seybold, L. and Banaszak, Z. (2020a). Fuzzy modelling and robust fault-tolerant scheduling of cooperating forklifts, IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK, pp. 1–10.10.1109/FUZZ48607.2020.9177782
]Search in Google Scholar
[
Witczak, M., Majdzik, P., Stetter, R. and Lipiec, B. (2020b). A fault-tolerant control strategy for multiple automated guided vehicles, Journal of Manufacturing Systems 55: 56–68.10.1016/j.jmsy.2020.02.009
]Search in Google Scholar
[
Witczak, M., Mrugalski, M., Pazera, M. and Kukurowski, N. (2020c). Fault diagnosis of an automated guided vehicle with torque and motion forces estimation: A case study, ISA Transactions 104: 370–381.10.1016/j.isatra.2020.05.01232439131
]Search in Google Scholar
[
Xie, X., Ma, D., Yue, D. and Xia, J. (2021). Gain-scheduling fault estimation for discrete-time Takagi–Sugeno fuzzy systems: A depth partitioning approach, IEEE Transactions on Circuits and Systems I: Regular Papers 69(4): 1693–1703.10.1109/TCSI.2021.3135911
]Search in Google Scholar
[
Yan, R. and Gao, R.X. (2009). Multi-scale enveloping spectrogram for vibration analysis in bearing defect diagnosis, Tribology International 42(2): 293–302.10.1016/j.triboint.2008.06.013
]Search in Google Scholar
[
Zadeh, L.A. (1992). Knowledge representation in fuzzy logic, in R.R.Yager and L.A. Zadeh (Eds), An Introduction to Fuzzy Logic Applications in Intelligent Systems, Springer, Boston, pp. 1–25.10.1007/978-1-4615-3640-6_1
]Search in Google Scholar
[
Zhang, L., Mu, Z. and Sun, C. (2018). Remaining useful life prediction for lithium-ion batteries based on exponential model and particle filter, IEEE Access 6: 17729–17740.10.1109/ACCESS.2018.2816684
]Search in Google Scholar
[
Zhou, Y., Huang, Y., Pang, J. and Wang, K. (2019). Remaining useful life prediction for supercapacitor based on long short-term memory neural network, Journal of Power Sources 440: 227149.10.1016/j.jpowsour.2019.227149
]Search in Google Scholar