Accès libre

ATiPreTA: AN Analytical Model for Time–Dependent Prediction of Terrorist Attacks

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Recent Advances in Modelling, Analysis and Implementation of Cyber-Physical Systems (Special section, pp. 345-413), Remigiusz Wiśniewski, Luis Gomes and Shaohua Wan (Eds.)
À propos de cet article

Citez

Army, U.S. (2006). Field Manual 4-02.51: Combat and Operational Stress Control, Department of the Army, Washington DC. Search in Google Scholar

Aylwin-Foster, N.R.F (2005). Changing the army for counterinsurgency operations, Military Review: 27–40. Search in Google Scholar

Benesty, J., Chen, J., Huang, Y. and Cohen, I. (2009). Pearson correlation coefficient, in J. Cohen et al. (Eds), Noise Reduction in Speech Processing, Springer, Berlin/Heidelberg, pp. 1–4.10.1007/978-3-642-00296-0_5 Search in Google Scholar

Bongers, A. and Torres, J.L. (2019). A bottleneck combat model: An application to the Battle of Thermopylae, Operational Research 21: 2859–2877, DOI: 10.1007/s12351-019-00513-0.10.1007/s12351-019-00513-0 Search in Google Scholar

Chabir, K., Rhouma, T., Keller, J.Y. and Sauter, D. (2018). State filtering for networked control systems subject to switching disturbances, International Journal of Applied Mathematics and Computer Science 28(3): 473–482, DOI: 10.2478/amcs-2018-0036.10.2478/amcs-2018-0036 Search in Google Scholar

Chai, T. and Draxler, R.R. (2014). Root mean square error (RMSE) or mean absolute error (MAE), Geoscientific Model Development Discussions 7(1): 1525–1534.10.5194/gmdd-7-1525-2014 Search in Google Scholar

Chmielewski, M., Kukie, M., Fr, D., Kukiełka, M., Frąszczak, D. and Bugajewski, D. (2018). Military and crisis management decision support tools for situation awareness development using sensor data fusion, in J.Świ ˛atek et al. (Eds), Information Systems Architecture and Technology: Proceedings of the 38th International Conference on Information Systems Architecture and Technology, ISAT 2017, Springer, Cham, pp. 189–199.10.1007/978-3-319-67229-8_17 Search in Google Scholar

Coulson, S.G. (2018). Lanchester modelling of intelligence in combat, IMA Journal of Management Mathematics (2): 149–164.10.1093/imaman/dpx014 Search in Google Scholar

Deitchman, S.J. (1962). A Lanchester model of guerrilla warfare, Operations Research 10(6): 818–827.10.1287/opre.10.6.818 Search in Google Scholar

El-Douh, A.A.-R., Lu, S.F., Elkouny, A.A. and Amein, A. (2022). Hybrid cryptography with a one-time stamp to secure contact tracing for COVID-19 infection, International Journal of Applied Mathematics and Computer Science 32(1): 139–146, DOI: 10.34768/amcs-2022-0011. Search in Google Scholar

Gambo, A. (2020). Mathematical modeling of dynamics behavior of terrorism and control, Caspian Journal of Mathematical Sciences 9(1): 68–85. Search in Google Scholar

Hu, X., Lai, F., Chen, G., Zou, R. and Feng, Q. (2019). Quantitative research on global terrorist attacks and terrorist attack classification, Sustainability 11(5): 1487.10.3390/su11051487 Search in Google Scholar

Janis, I.L. and Mann, L. (1977). Emergency decision making: A theoretical analysis of responses to disaster warnings, Journal of Human Stress 3(2): 35–48.10.1080/0097840X.1977.9936085864252 Search in Google Scholar

Junosza-Szaniawski, K., Nogalski, D. and Rzążewski, P. (2022). Exact and approximation algorithms for sensor placement against DDoS attacks, International Journal of Applied Mathematics and Computer Science 32(1): 35–49, DOI: 10.34768/amcs-2022-0004. Search in Google Scholar

Kebir, O., Nouaouri, I., Belhadj, M. and Ben Said, L. (2020a). A multi-agent model for countering terrorism, in H. Fujita et al. (Eds), Knowledge Innovation Through Intelligent Software Methodologies, Tools and Techniques: Proceedings of the 19th International Conference on New Trends in Intelligent Software Methodologies, Tools and Techniques (SoMeT_20), IOS Press, Amsterdam, p. 260.10.3233/FAIA200571 Search in Google Scholar

Kebir, O., Nouaouri, I., Belhadj, M. and Bensaid, L. (2020b). A multi-agent model for countering terrorism, Proceedings of the 33rd International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems (IEA/AIE_20), Kitakyushu, Japan, pp. 1–8.10.3233/FAIA200571 Search in Google Scholar

Kebir, O., Nouaouri, I., Belhaj, M., Ben Said, L. and Akrout, K. (2020c). A multi-agent architecture for modeling organizational planning against terrorist attacks in urban areas, 2020 International Multi-Conference on Organization of Knowledge and Advanced Technologies (OCTA), Tunis, Tunisia, pp. 1–8.10.1109/OCTA49274.2020.9151843 Search in Google Scholar

Kebir, O., Nouaouri, I., Belhaj, M., Said, L.B. and Akrout, K. (2020d). MAMCTA—Multi-agent model for counter terrorism actions, Revue de l’Information Scientifique et Technique 25(1): 76–90. Search in Google Scholar

Kebir, O., Nouaouri, I., Rejeb, L. and Said, L.B. (2022). Simulating actors’ behaviors within terrorist attacks scenarios based on a multi-agent system, Proceedings of the 12th International Defence and Homeland Security Simulation Worskhop (DHSS 2022), Rome, Italy, pp. 12–20. Search in Google Scholar

Kebir, O., Nouaouri, I., Rejeb, L. and Said, L.B. (2021). Conceptual terrorist attacks classification: Pre-processing for artificial intelligence-based classification, Proceedings of the 11th International Defence and Homeland Security Simulation Workshop (DHSS 2021), Kraków, Poland, pp. 16–24. Search in Google Scholar

Kress, M., Caulkins, J.P., Feichtinger, G., Grass, D. and Seidl, A. (2018). Lanchester model for three-way combat, European Journal of Operational Research 264(1): 46–54, DOI: 10.1016/j.ejor.2017.07.026.10.1016/j.ejor.2017.07.026 Search in Google Scholar

Kress, M. and Szechtman, R. (2009). Why defeating insurgencies is hard: The effect of intelligence in counter-insurgency operations—A best-case scenario, Operations Research 57(3): 578–585.10.1287/opre.1090.0700 Search in Google Scholar

Lanchester, F.W. (1916). Aircraft in Warfare: The Dawn of the Fourth Arm, Constable, London. Search in Google Scholar

Lee, H.-K. and Zo, H. (2017). Assimilation of military group decision support systems in Korea: The mediating role of structural appropriation, Information Development 33(1): 14–28.10.1177/0266666916628316 Search in Google Scholar

Lucas, T.W. and McGunnigle, J.E. (2003). When is model complexity too much? Illustrating the benefits of simple models with Hughes’ salvo equations, Naval Research Logistics 50(3): 197–217.10.1002/nav.10062 Search in Google Scholar

Maureen, A. (2017). Military mission combat efficiency, Journal of Defense Resources Management 8(1 (14)): 63–76. Search in Google Scholar

Okoye, C., Collins, O. and Mbah, G. (2020). Mathematical approach to the analysis of terrorism dynamics, Security Journal 33: 427–438, DOI: 10.1057/s41284-020-00235-5.10.1057/s41284-020-00235-5 Search in Google Scholar

Oladejo, M., Udoh, I. and Abam, A. (2020). Optimizing the community’s supports in counter-terrorism operations: A sticks–carrots game theoretic model, Journal of Applied Science and Technology 39(47): 45–67.10.9734/cjast/2020/v39i4731186 Search in Google Scholar

Osoba, O.A. and Kosko, B. (2017). Fuzzy cognitive maps of public support for insurgency and terrorism, Journal of Defense Modeling and Simulation 14(1): 17–32.10.1177/1548512916680779 Search in Google Scholar

Pagán, J.V. (2010). Improving the classification of terrorist attacks: A study on data pre-processing for mining the Global Terrorism Database, ICSTE 2010—2nd International Conference on Software Technology and Engineering, Puerto Rico, USA, Vol. 1, pp. 104–110. Search in Google Scholar

Pechenkina, A.O. and Bennett, D.S. (2017). Violent and non-violent strategies of counterinsurgency, Journal of Artificial Societies and Social Simulation 20(4): 11.10.18564/jasss.3540 Search in Google Scholar

Saltelli, A. and Annoni, P. (2010). How to avoid a perfunctory sensitivity analysis, Environmental Modelling & Software 25(12): 1508–1517.10.1016/j.envsoft.2010.04.012 Search in Google Scholar

Sandler, T. (2018). Terrorism: What Everyone Needs to Know, Oxford University Press, Oxford.10.1093/wentk/9780190845841.001.0001 Search in Google Scholar

Seehuus, R.A., Rise, Ø.R., Hannay, J.E., Wold, R. and Matlary, P. (2020). Cloud-based decision support system for planning military operations, Technical report, Norwegian Military Academy, Oslo. Search in Google Scholar

Sumithra, S. and Vadivel, R. (2021). An optimal innovation based adaptive estimation Kalman filter for accurate positioning in a vehicular ad-hoc network, International Journal of Applied Mathematics and Computer Science 31(1): 45–57, DOI: 10.34768/amcs-2021-0004. Search in Google Scholar

Surdu, J.R. and Kittka, K. (2008). The deep green concept, Proceedings of the 2008 Spring Simulation Multiconference, Ottawa, Canada, pp. 623–631. Search in Google Scholar

Udoh, I. and Oladejo, M. (2019). Optimal human resources allocation in counter-terrorism (CT) operation: A mathematical deterministic model, International Journal of Advances in Scientific Research and Engineering 5(1): 96–115.10.31695/IJASRE.2019.33008 Search in Google Scholar

Şuşnea, E. (2012). Decision support systems in military actions: Necessity, possibilities and constraints, Journal of Defense Resources Management 3(2): 131–140. Search in Google Scholar

Vilanova, A., Telea, A., Scheuermann, G. and Möller, T. (2008). Investigative visual analysis of global terrorism, Eurographics, Crete, Greece, Vol. 27, p. 2008. Search in Google Scholar

Willis, H.H., Morral, A., Kelly, T. and Medby, J. (2005). Estimating Terrorism Risk, RAND Corporation, Santa Monica.10.7249/MG388 Search in Google Scholar

eISSN:
2083-8492
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Mathématiques, Mathématiques appliquées