À propos de cet article

Citez

Albasri, S., Popescu, M. and Keller, J.M. (2019). Surgery task classification using procrustes analysis, 48th IEEE Applied Imagery Pattern Recognition Workshop, AIPR 2019, Washington, USA, pp. 1–6. Search in Google Scholar

Aronov, B., Har-Peled, S., Knauer, C., Wang, Y. and Wenk, C. (2006). Fréchet distance for curves, revisited, in Y. Azar and T. Erlebach (Eds), Algorithms—ESA 2006, Springer, Berlin, pp. 52–63.10.1007/11841036_8 Search in Google Scholar

Auder, B. and Fischer, A. (2012). Projection-based curve clustering, Journal of Statistical Computation and Simulation 82(8): 1145–1168.10.1080/00949655.2011.572882 Search in Google Scholar

Borsuk, K. and Dydak, J. (1980). What is the theory of shape?, Bulletin of the Australian Mathematical Society 22(2): 161–198.10.1017/S000497270000647X Search in Google Scholar

Cao, Y. and Mumford, D. (2002). Geometric structure estimation of axially symmetric pots from small fragments, Signal Processing, Pattern Recognition, and Applications, Crete, Greece. Search in Google Scholar

Cohen-Addad, V., Kanade, V. and Mallmann-Trenn, F. (2018). Clustering redemption—Beyond the impossibility of Kleinberg’s axioms, Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, Canada, pp. 8526–8535. Search in Google Scholar

Cohen-Addad, V., Kanade, V., Mallmann-Trenn, F. and Mathieu, C. (2017). Hierarchical clustering: Objective functions and algorithms, Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), New Orleans, USA, pp. 378–397. Search in Google Scholar

Davidson, I. and Ravi, S.S. (2007). Intractability and clustering with constraints, Proceedings of the 24th International Conference on Machine Learning, Corvalis, USA, pp. 201–208. Search in Google Scholar

Dryden, I.L. (2000). Statistical shape analysis in archaeology, Spatial Statistics in Archaeology, Chieti, Italy. Search in Google Scholar

Efrat, A., Fan, Q. and Venkatasubramanian, S. (2007). Curve matching, time warping, and light fields: New algorithms for computing similarity between curves, Journal of Mathematical Imaging and Vision 27(3): 203–216.10.1007/s10851-006-0647-0 Search in Google Scholar

Eguizabal, A., Schreier, P.J. and Schmidt, J. (2019). Procrustes registration of two-dimensional statistical shape models without correspondences, CoRR abs/1911.11431. Search in Google Scholar

Farris, J. (1969). On the cophenetic correlation coefficient, Systematic Zoology 18(3): 279–285.10.2307/2412324 Search in Google Scholar

da Fontoura Costa, L. and Cesar, R.M. (2010). Shape Analysis and Classification: Theory and Practice, CRC Press, Boca Raton.10.1201/9781420037555 Search in Google Scholar

Gilboa, A., Karasik, A., Sharon, I. and Smilansky, U. (2004). Towards computerized typology and classification of ceramics, Journal of Archaeological Science 31(6): 681–694.10.1016/j.jas.2003.10.013 Search in Google Scholar

Goodall, C. (1991). Procrustes methods in the statistical analysis of shape, Journal of the Royal Statistical Society B: Methodological 53(2): 285–339.10.1111/j.2517-6161.1991.tb01825.x Search in Google Scholar

Gower, J.C. and Dijksterhuis, G.B. (2004). Procrustes Problems, Oxford University Press, Oxford.10.1093/acprof:oso/9780198510581.001.0001 Search in Google Scholar

Hosni, N., Drira, H., Chaieb, F. and Amor, B.B. (2018). 3D Gait recognition based on functional PCA on Kendall’s shape space, 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, pp. 2130–2135. Search in Google Scholar

Hristov, V. and Agre, G. (2013). A software system for classification of archaeological artefacts represented by 2D plans, Cybernetics and Information Technologies 13(2): 82–96.10.2478/cait-2013-0017 Search in Google Scholar

Jain, A.K. (2010). Data clustering: 50 Years beyond k-means, Pattern Recognition Letters 31(8): 651–666.10.1016/j.patrec.2009.09.011 Search in Google Scholar

Kaliszewska, A. and Syga, M. (2018). On representative functions method for clustering of 2D contours with application to pottery fragments typology, Control and Cybernetics 47(1): 85–108. Search in Google Scholar

Kanevski, M. and Timonin, V. (2010). Machine learning analysis and modeling of interest rate curves, ESANN 2010: European Symposium on Artificial Neural Networks—Computational Intelligence and Machine Learning, Bruges, Belgium, pp. 47–52. Search in Google Scholar

Kendall, D.G. (1977). The diffusion of shape, Advances in Applied Probability 9(3): 428–430.10.2307/1426091 Search in Google Scholar

Kendall, D.G. (1989). A survey of the statistical theory of shape, Statistical Science 4(2): 87–99.10.1214/ss/1177012582 Search in Google Scholar

Kleinberg, J. (2002). An impossibility theorem for clustering, Proceedings of the 15th International Conference on Neural Information Processing Systems, NIPS’02, Vancouver, Canada, p. 463–470. Search in Google Scholar

Kotan, M., Öz, C. and Kahraman, A. (2021). A linearization-based hybrid approach for 3D reconstruction of objects in a single image, International Journal of Applied Mathematics and Computer Science 31(3): 501–513, DOI: 10.34768/amcs-2021-0034. Search in Google Scholar

Leski, J.M. and Kotas, M.P. (2018). Linguistically defined clustering of data, International Journal of Applied Mathematics and Computer Science 28(3): 545–557, DOI: 10.2478/amcs-2018-0042.10.2478/amcs-2018-0042 Search in Google Scholar

Maiza, C. and Gaildart, V. (2005). Automatic classification of archaeological potsherds, 8th International Conference on Computer Graphics and Artificial Intelligence, 3IA’2005, Limoges, France, pp. 11–12. Search in Google Scholar

Müller, M. (2007). Information Retrieval for Music and Motion, Springer, Berlin/Heidelberg.10.1007/978-3-540-74048-3 Search in Google Scholar

Mountjoy, P.A. (1999). Regional Mycenaean Decorated Pottery, Deutsches Archäologisches Institut, Berlin. Search in Google Scholar

Mumford, D. (1991). Mathematical theories of shape: Do they model perception?, Geometric Methods in Computer Vision, San Diego, USA, pp. 2–10. Search in Google Scholar

Palacio-Niño, J. and Berzal, F. (2019). Evaluation metrics for unsupervised learning algorithms, CoRR abs/1905.05667. Search in Google Scholar

Piccoli, C., Aparajeya, P., Papadopoulos, G.T., Bintliff, J., Leymarie, F., Bes, P., Van der Enden, M., P.J. and Daras, P. (2015). Towards the automatic classification of pottery sherds: Two complementary approaches, in A. Traviglia (Ed.), Across Space and Time, Amsterdam University Press, Amsterdam, pp. 463–474. Search in Google Scholar

Pizarro, D. and Bartoli, A. (2011). Global optimization for optimal generalized procrustes analysis, CVPR’11: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, USA, pp. 2409–2415. Search in Google Scholar

Sablatnig, R., Menard, C. and Kropatsch, W. (1998). Classification of archaeological fragments using a description language, European Association for Signal Processing (EUSIPCO), Rhodes, Greece, Vol. 2, pp. 1097–1100. Search in Google Scholar

Sangalli, L.M., Secchi, P., Vantini, S. and Vitelli, V. (2010). Classification of functional data: Unsupervised curve clustering when curves are misaligned, 2010 JSM Proceedings, Vancouver, Canada, pp. 4034–4047. Search in Google Scholar

Sangalli, L.M., Secchi, P., Vantini, S. and Vitelli, V. (2012). Joint clustering and alignment of functional data: An application to vascular geometries, in. A. Di Ciaccio et al. (Eds.), Advanced Statistical Methods for the Analysis of Large Data-Sets, Springer, Berlin/Heidelberg, pp. 34–43.10.1007/978-3-642-21037-2_4 Search in Google Scholar

Sharon, E. and Mumford, D. (2006). 2D-shape analysis using conformal mapping, International Journal of Computer Vision 70(1): 55–75.10.1007/s11263-006-6121-z Search in Google Scholar

Siminski, K. (2021). An outlier-robust neuro-fuzzy system for classification and regression, International Journal of Applied Mathematics and Computer Science 31(2): 303–319, DOI:10.34768/amcs-2021-0021 Search in Google Scholar

Sokal, R.R. and Rohlf, J.F. (1962). The comparison of dendrograms by objective methods, Taxon 11(2): 33–40.10.2307/1217208 Search in Google Scholar

Vogogias, A., Kennedy, J., Archambault, D., Smith, V.A. and Currant, H. (2016). MLCut: Exploring multi-level cuts in dendrograms for biological data, in C. Turkay and T.R. Wan (Eds), Computer Graphics and Visual Computing, Eurographics Association, Geneve. Search in Google Scholar

Wierzchoń, S.T. and Kłopotek, M.A. (2015). Algorithms of Cluster Analysis, Information Technologies: Research and Their Interdisciplinary Applications 3, Polish Academy of Sciences, Warsaw. Search in Google Scholar

Wilczek, J., Monna, F., Navarro, N. and Chateau-Smith, C. (2021). A computer tool to identify best matches for pottery fragments, Journal of Archaeological Science: Reports 37: 102891.10.1016/j.jasrep.2021.102891 Search in Google Scholar

Zhou, F. and De la Torre, F. (2012). Generalized time warping for multi-modal alignment of human motion, 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, pp. 1282–1289. Search in Google Scholar

eISSN:
2083-8492
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Mathematics, Applied Mathematics