1. bookVolume 32 (2022): Edition 1 (March 2022)
Détails du magazine
License
Format
Magazine
eISSN
2083-8492
Première parution
05 Apr 2007
Périodicité
4 fois par an
Langues
Anglais
access type Accès libre

Fast and Smooth Trajectory Planning for a Class of Linear Systems Based on Parameter and Constraint Reduction

Publié en ligne: 31 Mar 2022
Volume & Edition: Volume 32 (2022) - Edition 1 (March 2022)
Pages: 11 - 21
Reçu: 28 Jul 2021
Accepté: 06 Dec 2021
Détails du magazine
License
Format
Magazine
eISSN
2083-8492
Première parution
05 Apr 2007
Périodicité
4 fois par an
Langues
Anglais
Abstract

Fast and smooth trajectory planning is crucial for modern control systems, e.g., missiles, aircraft, robots and AGVs. However, classical spline based trajectory planning tools introduce redundant constraints and parameters, leading to high costs of computation and complicating fast and smooth execution of trajectory planning tasks. A new tool is proposed that employs truncated power functions to annihilate some constraints and reduce the number of parameters in the optimal model. It enables solving a simplified optimal problem in a shorter time while keeping the trajectory sufficiently smooth. With an engineering background, our case studies show that the proposed method has advantages over other solutions. It is promising in regard to the demanding tasks of trajectory planning.

Keywords

Aguilar-Ibanez, C. and Suarez-Castanon, M.S. (2019). A trajectory planning based controller to regulate an uncertain 3D overhead crane system, International Journal of Applied Mathematics and Computer Science 29(4): 693–702, DOI: 10.2478/amcs-2019-0051.10.2478/amcs-2019-0051 Search in Google Scholar

Berselli, G., Balugani, F., Pellicciari, M. and Gadaleta, M. (2016). Energy-optimal motions for servo-systems: A comparison of spline interpolants and performance indexes using a CAD-based approach, Robotics and Computer-Integrated Manufacturing 40: 55–65.10.1016/j.rcim.2016.01.003 Search in Google Scholar

Boor, C.D. and Fix, G.J. (1973). Spline approximation by quasi-interpolants, Journal of Approximation Theory 8(1): 19–45.10.1016/0021-9045(73)90029-4 Search in Google Scholar

Cheon, H. and Kim, B.K. (2019). Online bidirectional trajectory planning for mobile robots in state-time space, IEEE Transactions on Industrial Electronics 66(6): 4555–4565.10.1109/TIE.2018.2866039 Search in Google Scholar

Cui, L., Wang, H. and Chen, W. (2020). Trajectory planning of a spatial flexible manipulator for vibration suppression, Robotics and Autonomous Systems 123: 1–11, Paper no. 103316. Search in Google Scholar

Desai, A., Collins, M. and Michael, N. (2019). Efficient kinodynamic multi-robot replanning in known workspaces, 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada, pp. 1021–1027. Search in Google Scholar

Fahroo, F. and Ross, I.M. (2000). Direct trajectory optimization by a Chebyshev pseudospectral method, Proceedings of the 2000 American Control Conference, Chicago, USA,Vol.6, pp. 3860–3864. Search in Google Scholar

Fang, Y., Qi, J., Hu, J., Wang, W. and Peng, Y. (2020). An approach for jerk-continuous trajectory generation of robotic manipulators with kinematical constraints, Mechanism and Machine Theory 153: 1–22, Paper no. 103957. Search in Google Scholar

Gong, Q., Kang, W. and Ross, I.M. (2006). A pseudospectral method for the optimal control of constrained feedback linearizable systems, IEEE Transactions on Automatic Control 51(7): 1115–1129.10.1109/TAC.2006.878570 Search in Google Scholar

Heidari, H. and Saska, M. (2020). Trajectory planning of quadrotor systems for various objective functions, Robot-ica 39(1): 137–152.10.1017/S0263574720000247 Search in Google Scholar

Kim, J. (2020). Trajectory generation of a two-wheeled mobile robot in an uncertain environment, IEEE Transactions on Industrial Electronics 67(7): 5586–5594.10.1109/TIE.2019.2931506 Search in Google Scholar

Kroger, T. and Wahl, F.M. (2010). Online trajectory generation: Basic concepts for instantaneous reactions to unforeseen events, IEEE Transactions on Robotics 26(1): 94–111.10.1109/TRO.2009.2035744 Search in Google Scholar

Li, J., Ran, M. and Xie, L. (2021). Efficient trajectory planning for multiple non-holonomic mobile robots via prioritized trajectory optimization, IEEE Robotics and Automation Letters 6(2): 405–412.10.1109/LRA.2020.3044834 Search in Google Scholar

Liu, C., Zhang, C. and Xiong, F. (2020). Multistage cooperative trajectory planning for multimissile formation via bi-level sequential convex programming, IEEE Access 8: 22834–22853.10.1109/ACCESS.2020.2967873 Search in Google Scholar

Liu, P., Han, Y., Wang, W., Liu, X. and Liu, J. (2018). Maneuvering trajectory planning during the whole phase based on piecewise Radau pseudospectral method, Proceedings of the 37th Chinese Control Conference, Wuhan, China, pp. 4627–4632. Search in Google Scholar

Liu, Y., Zhang, Z., Wu, Z., Liu, F. and Li, X. (2021). Multiobjective preimpact trajectory-planning of space manipulator for self-assembling a heavy payload, International Journal of Advanced Robotic Systems 18(1): 1–22, Paper no. 1729881421990285. Search in Google Scholar

Mercy, T., Hostens, E. and Pipeleers, G. (2018). Online motion planning for autonomous vehicles in vast environments, 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC), Tokyo, Japan, pp. 114–119. Search in Google Scholar

Muscio, G., Pierri, F., Trujillo, M.A., Cataldi, E., Antonelli, G., Caccavale, F., Viguria, A., Chiaverini, S., and Ollero, A. (2018). Coordinated control of aerial robotic manipulators: Theory and experiments, IEEE Transactions on Control Systems Technology 26(4): 1406–1413.10.1109/TCST.2017.2716905 Search in Google Scholar

Park, J. and Kim, H.J. (2021). Online trajectory planning for multiple quadrotors in dynamic environments using relative safe flight corridor, IEEE Robotics and Automation Letters 6(2): 659–666.10.1109/LRA.2020.3047786 Search in Google Scholar

Powell, M.J.D. (1981). Approximation Theory and Methods, Cambridge University Press, Cambridge.10.1017/CBO9781139171502 Search in Google Scholar

Qian, Y., Yuan, J. and Wan, W. (2020). Improved trajectory planning method for space robot-system with collision prediction, Journal of Intelligent and Robotic System 99(11): 289–302.10.1007/s10846-019-01113-y Search in Google Scholar

Rousseau, G., Maniu, C.S., Tebbani, S., Babel, M. and Martin, N. (2019). Minimum-time B-spline trajectories with corridor constraints: Application to cinematographic quadrotor flight plans, Control Engineering Practice 89: 190–203.10.1016/j.conengprac.2019.05.022 Search in Google Scholar

Schoenberg, I.J. (1969). Approximations with Special Emphasis on Spline Functions, Academic Press, Madison. Search in Google Scholar

Spedicato, S. and Notarstefano, G. (2018). Minimum-time trajectory generation for quadrotors in constrained environments, IEEE Transactions on Control Systems Technology 26(4): 1335–1344.10.1109/TCST.2017.2709268 Search in Google Scholar

Sun, K. and Liu, X. (2021). Path planning for an autonomous underwater vehicle in a cluttered underwater environment based on the heat method, International Journal of Applied Mathematics and Computer Science 31(2): 289–301, DOI: 10.34768/amcs-2021-0020. Search in Google Scholar

Tatematsu, N. and Ohnishi, K. (2003). Tracking motion of mobile robot for moving target using NURBS curve, IEEE International Conference on Industrial Technology, Maribor, Slovenia, Vol. 1, pp. 245–249. Search in Google Scholar

Tho, H.D., Kaneshige, A. and Terashima, K. (2020). Minimum-time s-curve commands for vibration-free transportation of an overhead crane with actuator limits, Control Engineering Practice 98: 1–12, Paper no. 104390. Search in Google Scholar

Wang, M., Xiao, J., Zeng, F. and Wang, G. (2020). Research on optimized time-synchronous online trajectory generation method for a robot arm, Robotics and Autonomous Systems 126: 1–12, Paper no. 103453, DOI: 10.1016/j.robot.2020.103453.10.1016/j.robot.2020.103453 Search in Google Scholar

Wang, Y., Ueda, K. and Bortoff, S.A. (2013). A Hamiltonian approach to compute an energy efficient trajectory for a servomotor system, Automatica 49(12): 3550–3561.10.1016/j.automatica.2013.09.019 Search in Google Scholar

Yu, L., Wang, K., Zhang, Q. and Zhang, J. (2020). Trajectory planning of a redundant planar manipulator based on joint classification and particle swarm optimization algorithm, Multibody System Dynamic 50(4): 25–43.10.1007/s11044-019-09720-1 Search in Google Scholar

Zhang, S., Zanchettin, A.M., Villa, R. and and Dai, S. (2020). Real-time trajectory planning based on joint-decoupled optimization in human-robot interaction, Mechanism and Machine Theory 144, Paper no. 103664, DOI: 10.1016/j.mechmachtheory.2019.103664.10.1016/j.mechmachtheory.2019.103664 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo