Accès libre

Applications of rough sets in big data analysis: An overview

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Advanced Machine Learning Techniques in Data Analysis (special section, pp. 549-611), Maciej Kusy, Rafał Scherer, and Adam Krzyżak (Eds.)
À propos de cet article

Citez

Alhawarat, M. and Hegazi, M. (2018). Revisiting k-means and topic modeling: A comparison study to cluster Arabic documents, IEEE Access 6: 42740–42749.10.1109/ACCESS.2018.2852648 Search in Google Scholar

Banerjee, S. and Badr, Y. (2018). Evaluating decision analytics from mobile big data using rough set based ant colony, in G. Mastorakis et al. (Eds), Mobile Big Data, Springer, Cham, pp. 217–231.10.1007/978-3-319-67925-9_9 Search in Google Scholar

Bazan, J. (1996). Dynamic reducts and statistical inference, Proceedings of the 6th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Granada, Spain, Vol. 3, pp. 1147–1152. Search in Google Scholar

Bazan, J., Drygaś, P., Zaręba, L. and Molenda, P. (2020). A new method of building a more effective ensemble classifiers, IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK, pp. 1–6. Search in Google Scholar

Bazan, J.G. (1998). A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables, Rough Sets in Knowledge Discovery 1: 321–365. Search in Google Scholar

Bazan, J.G. (2008). Hierarchical classifiers for complex spatio-temporal concepts, in R.H. Peters et al. (Eds), Transactions on Rough Sets IX, Lecture Notes in Computer Science, Vol. 5390, Springer, Berlin/Heidelberg, pp. 474–750.10.1007/978-3-540-89876-4_26 Search in Google Scholar

Bazan, J.G., Szczuka, M. and Wroblewski, J. (2002). A new version of rough set exploration system, in J.F. Peters et al. (Eds), Rough Sets and Current Trends in Computing, Springer, Berlin/Heidelberg, pp. 397–404.10.1007/3-540-45813-1_52 Search in Google Scholar

Bazan, J., Peters, J. and Skowron, A. (2005). Behavioral pattern identification through rough set modelling, 10th International Conference Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Regina, Canada, pp. 688–697. Search in Google Scholar

Bello, R. and Falcon, R. (2017). Rough sets in machine learning: A review, in A. Skowron et al. (Eds), Thriving Rough Sets, Springer, Cham, pp. 87–118.10.1007/978-3-319-54966-8_5 Search in Google Scholar

Bhatt, R.B. and Gopal, M. (2006). On the extension of functional dependency degree from crisp to fuzzy partitions, Pattern Recognition Letters 27(5): 487–491.10.1016/j.patrec.2005.09.011 Search in Google Scholar

Bhatt, R., Ramanna, S. and Peters, J.F. (2009). Software defect classification: A comparative study of rough-neuro-fuzzy hybrid approaches with linear and non-linear SVMs, in A. Abraham et al. (Eds.), Rough Set Theory: A True Landmark in Data Analysis, Studies in Computational Intelligence, Vol 174, Springer, Berlin/Heidelberg, pp. 213–231.10.1007/978-3-540-89921-1_8 Search in Google Scholar

Błaszczyński, J., Greco, S., Matarazzo, B., Słowiński, R. and Szeląg, M. (2012). jMAF—Dominance-based rough set data analysis framework, in A. Skowron and Z. Suraj (Eds.), Rough Sets and Intelligent Systems—Professor Zdzislaw Pawlak in Memoriam, Intelligent Systems Reference Library, Vol. 42, Springer, pp. 185–209. Search in Google Scholar

Breiman, L. (2001). Random forests, Machine Learning 45(1): 5–32.10.1023/A:1010933404324 Search in Google Scholar

Brinckman, A., Chard, K., Gaffney, N., Hategan, M., Jones, M.B., Kowalik, K., Kulasekaran, S., Ludäscher, B., Mecum, B.D., Nabrzyski, J., Stodden, V., Taylor, I.J., Turk, M.J. and Turner, K. (2019). Computing environments for reproducibility: Capturing the whole tale, Future Generation Computer Systems 94: 854–867.10.1016/j.future.2017.12.029 Search in Google Scholar

Bulger, M., Taylor, G. and Schroeder, R. (2014). Engaging Complexity: Challenges and Opportunities of Big Data, NEMDOE, London. Search in Google Scholar

Cessie, S. and Houwelingen, J.C. (1992). Ridge estimators in logistic regression, Applied Statistics 41(1): 191–201.10.2307/2347628 Search in Google Scholar

Chakraborti, D.B. and Pal, S.K. (2021). Granular Video Computing with Rough Sets, Deep Learning and IoT, World Scientific, Singapore.10.1142/12013 Search in Google Scholar

Chao, W. (2018). High Performance Computing for Big Data: Methodologies and Applications, CRC Press, Portland. Search in Google Scholar

Chądzyńska-Krasowska, A., Stawicki, S. and ’Slęzak, D. (2017). A metadata diagnostic framework for a new approximate query engine working with granulated data summaries, in L. Polkowski et al. (Eds), Rough Sets, Lecture Notes in Computer Science, Vol. 10313, Springer, Cham, pp. 623–643.10.1007/978-3-319-60837-2_50 Search in Google Scholar

Chen, L., Li, Z., Lv, M. and Xiong, M. (2020a). Intelligent prediction algorithm of economic trend index based on rough set support vector machine, Journal of Intelligent and Fuzzy Systems 38(1): 147–153.10.3233/JIFS-179389 Search in Google Scholar

Chen, X., Li, D., Wang, P. and Yang, X. (2020b). A deep convolutional neural network with fuzzy rough sets for FER, IEEE Access 8: 2772–2779.10.1109/ACCESS.2019.2960769 Search in Google Scholar

Chen, Q., Huang, M. and Wang, H. (2021). A feature discretization method for classification of high-resolution remote sensing images in coastal areas, IEEE Transactions on Geoscience and Remote Sensing 59(10): 8584–8598.10.1109/TGRS.2020.3016526 Search in Google Scholar

Chen, Z. (2017). Exploring dynamic granules for time-varying big data, IEEE 15th International Conference on Dependable, Autonomic and Secure Computing, Orlando, USA, pp. 1092–1097. Search in Google Scholar

Chirigati, F., Rampin, R., Shasha, D. and Freire, J. (2016). ReproZip: Computational reproducibility with ease, Proceedings of the 2016 International Conference on Management of Data, New York, USA, pp. 2085–2088. Search in Google Scholar

Chowdhury, T., Chakraborty, S. and Setua, S.K. (2016). Knowledge extraction from big data using MapReduce-based Parallel-Reduct algorithm, 5th International Conference on Computer Science and Network Technology (ICCSNT), Changchun, China, pp. 240–246. Search in Google Scholar

Chu, Z. and Zhang, Y. (2020). An accurate financially-challenged college student identification model based on rough set-bp neural networks and its application, International Conference on Computer Information and Big Data Applications (CIBDA), Guiyang, China, pp. 144–150. Search in Google Scholar

Chen, Y., Xue, Y., Ma Y. and Xu, F. (2017). Measures of uncertainty for neighborhood rough sets, Knowledge-Based Systems 120: 226–235.10.1016/j.knosys.2017.01.008 Search in Google Scholar

Cichosz, P. (2015). Data Mining Algorithms: Explained Using R, Wiley, Chichester.10.1002/9781118950951 Search in Google Scholar

Cios, K. (2018). Deep neural networks—A brief history, in A. Gawęda et al. (Eds), Advances in Data Analysis with Computational Methods: Dedicated to Professor Jacek Zurada, Studies in Computational Intelligence, Vol. 738, Springer, Cham, pp. 183–200.10.1007/978-3-319-67946-4_7 Search in Google Scholar

Clark, P.G. and Grzymała-Busse, J.W. (2011). Experiments on probabilistic approximations, 2011 IEEE International Conference on Granular Computing, GrC-2011, Kaohsiung, Taiwan, pp. 144–149. Search in Google Scholar

Clark, P.G., Grzymała-Busse, J.W., Hippe, Z.S., Mroczek, T. and Niemiec, R. (2020). Complexity of rule sets mined from incomplete data using probabilistic approximations based on generalized maximal consistent blocks, in M. Cristani et al. (Eds), Knowledge-Based and Intelligent Information & Engineering Systems, Procedia Computer Science, Vol. 176, Elsevier, Amsterdam, pp. 1803–1812.10.1016/j.procs.2020.09.219 Search in Google Scholar

Clark, P.G., Grzymała-Busse, J.W., Mroczek, T. and Niemiec, R. (2019). Rule set complexity in mining incomplete data using global and saturated probabilistic approximations, in R. Damasevicius and G. Vasiljeviene (Eds), Information and Software Technologies, Communications in Computer and Information Science, Vol. 1078, Springer, Cham, pp. 451–462.10.1007/978-3-030-30275-7_35 Search in Google Scholar

Cornelis, C., Nguyen, H.S., Pal, S., Skowron, A. and Wu, W.-Z. (2015). Rough sets and fuzzy sets preface, Fundamenta Informaticae 142(1–4): 5–8.10.3233/FI-2015-1281 Search in Google Scholar

Cornelis, C., Verbiest, N. and Jensen, R. (2010). Ordered weighted average based fuzzy rough sets, in J. Yu et al. (Eds), Rough Set and Knowledge Technology, Springer, Berlin, pp. 78–85.10.1007/978-3-642-16248-0_16 Search in Google Scholar

Cui, G. and Gao, H. (2019). Rough set processing outliers in cluster analysis, 4th International IEEE Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, pp. 111–115. Search in Google Scholar

Cui, W. and Huang, L. (2015). Knowledge reduction method based on information entropy for port big data using MapReduce, International Conference on Logistics, Informatics and Service Sciences (LISS), Barcelona, Spain, pp. 1–6. Search in Google Scholar

Czolombitko, M. and Stepaniuk, J. (2017). Scalable maximal discernibility discretization for big data, in L. Polkowski et al. (Eds), Rough Sets, Lecture Notes in Computer Science, Vol. 10313, Springer, Cham, pp. 644–654.10.1007/978-3-319-60837-2_51 Search in Google Scholar

Dagdia, Z.C., Zarges, C., Beck, G., Azzag, H. and Lebbah, M. (2017). A distributed rough set theory based algorithm for an efficient big data preprocessing under the Spark framework, IEEE International Conference on Big Data (Big Data), Boston, USA, pp. 911–916. Search in Google Scholar

Dagdia, Z.C., Zarges, C., Beck, G., Azzag, H. and Lebbah, M. (2018). A distributed rough set theory algorithm based on locality sensitive hashing for an efficient big data preprocessing, IEEE International Conference on Big Data, Seattle, USA, pp. 2597–2606. Search in Google Scholar

D’eer, L., Cornelis, C. and Yao, Y. (2016). A semantically sound approach to Pawlak rough sets and covering-based rough sets, International Journal of Approximate Reasoning 78: 62–72.10.1016/j.ijar.2016.06.013 Search in Google Scholar

Delen, D. and Demirkan, H. (2013). Data, information and analytics as services, Decision Support Systems 55(1): 359–363.10.1016/j.dss.2012.05.044 Search in Google Scholar

Delimata, P., Moshkov, M., Skowron, A. and Suraj, Z. (2008). Comparison of lazy classification algorithms based on deterministic and inhibitory decision rules, 3rd International Conference on Rough Sets and Knowledge Technology, Chengdu, China, pp. 55–62. Search in Google Scholar

Delimata, P., Moshkov, M., Skowron, A. and Suraj, Z. (2009). Inhibitory Rules in Data Analysis: A Rough Set Approach, Springer, Berlin/Heidelberg. Search in Google Scholar

Delimata, P. and Suraj, Z. (2013). Hybrid methods in data classification and reduction, in A. Skowron and Z. Suraj (Eds), Rough Sets and Intelligent Systems—Professor Zdzisław Pawlak in Memoriam, Intelligent Systems Reference Library, Vol. 43, Springer, Berlin/Heidelberg, pp. 263–291.10.1007/978-3-642-30341-8_14 Search in Google Scholar

Deng, Y., Ren, Z., Kong, Y., Bao, F. and Dai, Q. (2017). A hierarchical fused fuzzy deep neural network for data classification, IEEE Transaction on Fuzzy Systems 25(4): 1006–1012.10.1109/TFUZZ.2016.2574915 Search in Google Scholar

Dubois, D. and Prade, H. (1990). Rough fuzzy sets and fuzzy rough sets, International Journal of General Systems 17(2–3): 191–209.10.1080/03081079008935107 Search in Google Scholar

Dubois, D. and Prade, H. (1992). Putting rough sets and fuzzy sets together, in R. Słowiński (Ed.), Intelligent Decision Support, Theory and Decision Library, Vol. 11, Springer, Dordrecht, pp. 203–232.10.1007/978-94-015-7975-9_14 Search in Google Scholar

El-Bably, M. and Kozae, A. (2014). New generalized definitions of rough membership relations and functions from topological point of view, Journal of Advances in Mathematics 8(3): 1635–1652. Search in Google Scholar

Ester, M., Kriegel, H., Sander, J. and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise, 2nd International Conference on Knowledge Discovery and Data Mining, Portland, USA, pp. 226–231. Search in Google Scholar

Ganivada, A. and Pal, S.K. (2011). A novel fuzzy rough granular neural network for classification, International Journal of Computational Intelligence Systems 4(5): 1042–1051.10.1080/18756891.2011.9727852 Search in Google Scholar

GARTNER (2001). Big data, Gartner Glossary, Gartner, Inc., Stamford, https://www.gartner.com/en/information-technology/glossary/big-data. Search in Google Scholar

Google Scholar (2021). Rough sets, Search, https://scholar.google.com/scholar?hl=pl&as_sdt=2007&q=allintitle%3A+%22Rough+sets%22&btnG=. Search in Google Scholar

Gordon, A.D., Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984). Classification and regression trees, Bio-metrics 40(3): 874.10.2307/2530946 Search in Google Scholar

Greco, S., Matarazzo, B., Słowiński, R. and Stefanowski, J. (2001). Variable consistency model of dominance-based rough sets approach, in W. Ziarko and Y. Yao (Eds.), Rough Sets and Current Trends in Computing, Lecture Notes in Computer Science, Vol. 2005, Springer, Berlin/Heidelberg, pp. 170–181.10.1007/3-540-45554-X_20 Search in Google Scholar

Greco, S., Matarazzo, B. and Słowinski, R. (1999). Rough approximation of a preference relation by dominance relations, European International Operational Research 117(1): 63–83.10.1016/S0377-2217(98)00127-1 Search in Google Scholar

Grzegorowski, M., Janusz, A., Ślęzak, D. and Szczuka, M. (2017). On the role of feature space granulation in feature selection processes, IEEE International Conference on Big Data (Big Data), Boston, USA, pp. 1806–1815. Search in Google Scholar

Grzymała-Busse, J.W. (1992). LERS—A system for learning from examples based on rough sets, in R. Słowiński (Ed.), Intelligent Decision Support, Theory and Decision Library, Vol. 11, Springer, Dordrecht, pp. 3–18.10.1007/978-94-015-7975-9_1 Search in Google Scholar

Grzymała-Busse, J.W. (1997). A new version of the rule induction system LERS, Fundamenta Informaticae 31(1): 27–39.10.3233/FI-1997-3113 Search in Google Scholar

Hamidinekoo, A., Dagdia, Z.C., Suhail, Z. and Zwiggelaar, R. (2018). Distributed rough set based feature selection approach to analyse deep and hand-crafted features for mammography mass classification, IEEE International Conference on Big Data, Seattle, USA, Vol. 1, pp. 2423–2432. Search in Google Scholar

Hassan, Y.F. (2017). Deep learning architecture using rough sets and rough neural networks, Kybernetes 46(4): 693–705.10.1108/K-09-2016-0228 Search in Google Scholar

Hirota, K. and Pedrycz, W. (1999). Fuzzy computing for data mining, Proceedings of the IEEE 87(9): 1575–1600.10.1109/5.784240 Search in Google Scholar

Hong-Wei, Y. and Xindi, T. (2016). Based on rough sets and L1 regularization of the fault diagnosis of linear regression model, International Conference on Intelligent Transportation, Changsha, China, pp. 490–492. Search in Google Scholar

Hu, F. and Wang, G. (2008). Huge data mining based on rough set theory and granular computing, IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Sydney, Australia, pp. 655–658. Search in Google Scholar

Hu, Q., Li, L. and Zhu, P. (2013). Exploring neighborhood structures with neighborhood rough sets in classification learning, in A. Skowron and Z. Suraj (Eds), Rough Sets and Intelligent Systems—Professor Zdzisław Pawlak in Memo-riam, Springer, Berlin/Heidelberg, pp. 277–307.10.1007/978-3-642-30344-9_10 Search in Google Scholar

Hu, Q., Zhang, L., Zhou, Y. and Pedrycz, W. (2017a). Large-scale multimodality attribute reduction with multi-kernel fuzzy rough sets, IEEE Transactions on Fuzzy Systems 26(1): 226–238.10.1109/TFUZZ.2017.2647966 Search in Google Scholar

Hu, Q., Zhang, L., Zhou, Y. and Pedrycz, W. (2018). Large-scale multimodality attribute reduction with multi-kernel fuzzy rough sets, IEEE Transactions on Fuzzy Systems 26(1): 226–238.10.1109/TFUZZ.2017.2647966 Search in Google Scholar

Hu, J., Li, T., Luo, C. and Li, S. (2017b). Incremental fuzzy probabilistic rough sets over two universes, International Journal of Approximate Reasoning 81: 28–48.10.1016/j.ijar.2016.11.002 Search in Google Scholar

Huang, Q., Li, T., Huang, Y., Yang, X. and Fujita, H. (2020). Dynamic dominance rough set approach for processing composite ordered data, Knowledge Based Systems 187: 104829.10.1016/j.knosys.2019.06.037 Search in Google Scholar

Huang, Y., Li, T., Luo, C., Fujita, H. and jinn Horng, S. (2017). Dynamic variable precision rough set approach for probabilistic set-valued information systems, Knowledge-Based Systems 122(5): 131–147.10.1016/j.knosys.2017.02.002 Search in Google Scholar

Ilczuk, G. and Wakulicz-Deja, A. (2005). Rough sets approach to medical diagnosis system, in P.S. Szczepaniak et al. (Eds), Advances in Web Intelligence, Lecture Notes in Computer Science, Vol. 3528, Springer, Berlin/Heidelberg, pp. 204–210.10.1007/11495772_32 Search in Google Scholar

Inuiguchi, M. (2013). Rough representations of ill-known sets and their manipulations in low dimensional space, in A. Skowron and Z. Suraj (Eds), Rough Sets and Intelligent Systems—Professor Zdzisław Pawlak in Memoriam, Springer, Berlin/Heidelberg, pp. 309–331.10.1007/978-3-642-30344-9_11 Search in Google Scholar

Ishizu, S., Gehrmann, A. and Nagaw, Y.Y. (2007). Rough ontology: Extension of ontologies by rough sets, in G. Smith and M.J. Salvendy (Eds), Human Interface and the Management of Information: Methods, Techniques and Tools in Information Design, Springer, Berlin/Heidelberg, pp. 456–462.10.1007/978-3-540-73345-4_52 Search in Google Scholar

Isitor, E. and Stanier, C. (2016). Defining big data, Proceedings of the International Conference on Big Data and Advanced Wireless Technologies, New York, USA, pp. 1–6. Search in Google Scholar

Islam, M., Inan, T., Rafi, S., Akter, S., Sarker, I.H. and Islam, A. (2020). A systematic review on the use of AI and ML for fighting the COVID-19 pandemic, IEEE Transactions on Artificial Intelligence 1(3): 258–270.10.1109/TAI.2021.3062771 Search in Google Scholar

Ivanov, T., Korfiatis, N., Zicari, R. (2013). On the inequality of the 3V’s of big data architectural paradigms: A case for heterogeneity, arXiv abs/1311.0805. Search in Google Scholar

Ivie, P. and Thain, D. (2018). Reproducibility in scientific computing, ACM Computing Surveys 51(3): 1–36.10.1145/3186266 Search in Google Scholar

Izakian, H., Pedrycz, W. and Jamal, I. (2015). Fuzzy clustering of time series data using dynamic time warping distance, Engineering Applications of Artificial Intelligence 39: 235–244.10.1016/j.engappai.2014.12.015 Search in Google Scholar

Jain, A.K. and Dubes, R.C. (1988). Algorithms for Clustering Data, Prentice-Hall, Upper Saddle River. Search in Google Scholar

Janusz, A. and Ślęzak, D. (2014). Rough set methods for attribute clustering and selection, Applied Artificial Intelligence 28(3): 220–242.10.1080/08839514.2014.883902 Search in Google Scholar

Jensen, R. (2014). Fuzzy-rough data mining with WEKA, Tutorial, http://users.aber.ac.uk/rkj/Weka.pdf. Search in Google Scholar

Jensen, R. and Cornelis, C. (2008). A new approach to fuzzy-rough nearest neighbour classification, in C.C. Chan et al. (Eds), Rough Sets and Current Trends in Computing, Lecture Notes in Computer Science, Vol. 5306, Springer, Berlin/Heidelberg, pp. 310–319.10.1007/978-3-540-88425-5_32 Search in Google Scholar

Jensen, R., Cornelis, C. and Shen, Q. (2009). Hybrid fuzzy-rough rule induction and feature selection, 2009 IEEE International Conference on Fuzzy Systems, Jeju, South Korea, pp. 1151–1156. Search in Google Scholar

Jian, Z., Sakai, H., Watada, J., Roy, A., Hilmi, M. and Hassan, B. (2019). An Apriori-based data analysis on suspicious network event recognition, IEEE International Conference on Big Data (Big Data): Suspicious Network Event Recognition, Los Angeles, USA, pp. 5888–5896. Search in Google Scholar

Jing, S., Yang, J. and She, K. (2014). A parallel method for rough entropy computation using MapReduce, 10th International Conference on Computational Intelligence and Security, Kunming, China, pp. 707–710. Search in Google Scholar

Jingjing, J., Hongzhe, X. and Zhuangzhuang, S. (2019). Application of attribute reduction algorithm of rough set based on mix_fp tree in computer teaching, 2nd International Conference on Information Systems and Computer Aided Education (ICISCAE), Dalian, China, pp. 78–81. Search in Google Scholar

jMAF (2021). jMAF—Rough Set Data Analysis Framework, http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html. Search in Google Scholar

John, G.H. and Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers, 11th Conference on Uncertainty in Artificial Intelligence, Montreal, Canada, pp. 338–345. Search in Google Scholar

Kang, X., Liu, X. and Zhai, M. (2011). Instances selection for NN with fuzzy rough technique, International Conference on Machine Learning and Cybernetics, Guilin, China, pp. 1097–1100. Search in Google Scholar

Kaufman, L. and Rousseeuw, P.J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis, Wiley, New York.10.1002/9780470316801 Search in Google Scholar

Khan, M.A. and Banerjee, M. (2013). Algebras for information systems, in A. Skowron and Z. Suraj (Eds), Rough Sets and Intelligent Systems—Professor Zdzisław Pawlak in Memoriam, Intelligent Systems Reference Library, Vol. 42, Springer, Berlin/Heidelberg, pp. 381–407.10.1007/978-3-642-30344-9_14 Search in Google Scholar

Kong, L., Qu, W., Yu, J., Zuo, H., Chen, G., Xiong, F., Pan, S. and Siyu Lin, M.Q. (2020). Distributed feature selection for big data using fuzzy rough sets, IEEE Transactions on Fuzzy Systems 28(5): 846–857.10.1109/TFUZZ.2019.2955894 Search in Google Scholar

Kopczyński, M., Grześ, T. and Stepaniuk, J. (2016). Core for large datasets: Rough sets on FPGA, Fundamenta Informaticae 147(2–3): 241–259.10.3233/FI-2016-1407 Search in Google Scholar

Kopczyński, M., Grześ, T. and Stepaniuk, J. (2017). Hardware supported rule-based classification on big datasets, in L. Polkowski et al. (Eds), Rough Sets, Lecture Notes in Computer Science, Vol. 10313, Springer, Cham, pp. 655–668.10.1007/978-3-319-60837-2_52 Search in Google Scholar

Krishnamurthy, S. and Janardanan, A. (2018). Rough set based ontology matching, International Journal of Rough Sets and Data Analysis 5(2): 46–68.10.4018/IJRSDA.2018040103 Search in Google Scholar

Kundu, S. and Pal, S.K. (2018). Double bounded rough set, tension measure, and social link prediction, IEEE Transactions on Computational Social Systems 5(3): 841–853.10.1109/TCSS.2018.2861215 Search in Google Scholar

Kune, R. (2014). Genetic algorithm based data-aware group scheduling for big data clouds, BDC’14: Proceedings of the 2014 IEEE/ACM International Symposium on Big Data Computing, London, UK, pp. 96–104. Search in Google Scholar

Kwiatkowski, P., Hoa, N. and Nguyen, H.S. (2010). On scalability of rough set methods, in E. Hüllermeier et al. (Eds), Information Processing and Management of Uncertainty in Knowledge-Based Systems: Theory and Methods, Communications in Computer and Information Science, Vol. 80, Springer, Berlin/Heidelberg, pp. 288–297.10.1007/978-3-642-14055-6_30 Search in Google Scholar

Landwehr, N., Hall, M. and Frank, E. (2005). Logistic model trees, Machine Learning 59: 161–205.10.1007/s10994-005-0466-3 Search in Google Scholar

Lenz, O.U., Peralta, D. and Cornelis, C. (2020). Fuzzy-rough-learn 0.1: A Python library for machine learning with fuzzy rough sets, in R. Bello et al. (Eds), Rough Sets, Lecture Notes in Computer Science, Vol. 12179, Springer, Cham, pp. 491–499. Search in Google Scholar

Li, D., Zhang, H., Li, T., Bouras, A. and Wang, X.Y.T. (2021). Hybrid missing value imputation algorithms using fuzzy c-means and vaguely quantified rough set, IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2021.3058643, (early access).10.1109/TFUZZ.2021.3058643 Search in Google Scholar

Li, T., Luo, C., Chen, H. and Zhang, J. (2015). PICKT: A solution for big data analysis, in D. Ciucci et al. (Eds), Rough Sets and Knowledge Technology, Lecture Notes in Computer Science, Vol. 9436, Springer, Cham, pp. 15–25.10.1007/978-3-319-25754-9_2 Search in Google Scholar

Li, X., Li, X. and Zhao, Z. (2016). Combining deep learning with rough set analysis: A model of cyberspace situational awareness, 6th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, pp. 182–185. Search in Google Scholar

Li, X., Luo, C., Liu, P. and Wang, L. (2019). Information entropy differential privacy: a differential privacy protection data method based on rough set theory, IEEE International Conference on Dependable, Autonomic and Secure Computing/Pervasive Intelligence and Computing/Cloud and Big Data Computing/Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Fukuoka, Japan, pp. 918–923. Search in Google Scholar

Li, X. and Shen, Y. (2020). Discretization algorithm for incomplete economic information in rough set based on big data, Symmetry 12(8): 1245.10.3390/sym12081245 Search in Google Scholar

Lin, G., Liang, J. and Qian, Y. (2015). An information fusion approach by combining multigranulation rough sets and evidence theory, Information Sciences 314(1): 184–199.10.1016/j.ins.2015.03.051 Search in Google Scholar

Lin, G., Liang, J., Qian, Y. and Li, J. (2016). A fuzzy multigranulation decision-theoretic approach to multi-source fuzzy information systems, Knowledge-Based Systems 91: 102–113.10.1016/j.knosys.2015.09.022 Search in Google Scholar

Liu, P. and Zhang, G. (2019). Research on key attributes of learning behavior based on rough set, 14th International Conference on Computer Science & Education (ICCSE), Toronto, Canada, pp. 1030–1034. Search in Google Scholar

Lu, Z., Liu, K., Liu, Z., Wang, C., Shen, M. and Xu, T. (2019). An efficient annotation method for big data sets of high-resolution earth observation images, ICBDT 2019: Proceedings of the 2nd International Conference on Big Data Technologies, Jinan, China, pp. 240–243. Search in Google Scholar

Luo, C., Li, T., Chen, H., Fujita, H. and Yi, Z. (2016). Efficient updating of probabilistic approximations with incremental objects, Knowledge-Based Systems 109(C): 71–83.10.1016/j.knosys.2016.06.025 Search in Google Scholar

Luo, C., Li, T., Chen, H., Fujita, H. and Yi, Z. (2018). Incremental rough set approach for hierarchical multicriteria classification, Information Sciences 429: 72–87.10.1016/j.ins.2017.11.004 Search in Google Scholar

Lv, Z., Liu, T., Shi, C., Benediktsson, J.A. and Du, H. (2019). A novel land cover change detection method based on k-means clustering and adaptive majority voting using bitemporal remote sensing images, IEEE Access 7: 34425–34437.10.1109/ACCESS.2019.2892648 Search in Google Scholar

Madrid, N., Medina, J. and Ramírez-Poussa, E. (2020). Rough sets based on Galois connections, International Journal of Applied Mathematics and Computer Science 30(2): 299–313, DOI: 10.34768/amcs-2020-0023. Search in Google Scholar

Meng, Y., Liang, J., Cao, F. and He, Y. (2018). A new distance with derivative information for functional k-means clustering algorithm, Information Sciences 463: 166–185.10.1016/j.ins.2018.06.035 Search in Google Scholar

Mondelli, M.L., Peterson, A. and Gadelha, L. (2019). Exploring reproducibility and FAIR principles in data science using ecological niche modeling as a case study, in G. Guizzardi et al. (Eds), Advances in Conceptual Modeling, Lecture Notes in Computer Science, Vol. 11787, Springer, Cham, pp. 23–33.10.1007/978-3-030-34146-6_3 Search in Google Scholar

Murtagh, F. (1983). A survey of recent advances in hierarchical clustering algorithms, Computer Journal 26(4): 354–359.10.1093/comjnl/26.4.354 Search in Google Scholar

Murtagh, F. and Contreras, P. (2012). Algorithms for hierarchical clustering: An overview, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2(1): 86–97.10.1002/widm.53 Search in Google Scholar

Narayanan, U., Paul, V. and Joseph, S. (2017). Different analytical techniques for big data analysis: A review, International Conference on Energy, Chennai, India, pp. 372–382. Search in Google Scholar

Nguyen, H. (1997). Discretization of Real Value Attributes, Boolean Reasoning Approach, PhD thesis, University of Warsaw, Warsaw. Search in Google Scholar

Nguyen, H.S. (1998). Discretization methods in data mining, in L. Polkowski (Ed.), Rough Sets in Knowledge Discovery, Physica-Verlag, Heidelberg, pp. 451–482. Search in Google Scholar

Nguyen, H.S. (2006). Approximate Boolean reasoning: Foundations and applications in data mining, in J.F. Peters and A. Skowron (Eds), Transactions on Rough Sets, Lecture Notes in Computer Science, Vol. 4100, Springer, Berlin/Heidelberg, pp. 334–506.10.1007/11847465_16 Search in Google Scholar

Nguyen, H.S., Nguyen, N.T., Nguyen, H.S. and Nguyen, L. (2017). Some observations on representation of dependency degree k, 9th International Conference on Knowledge and Systems Engineering (KSE), Hue, Vietnam, pp. 13–17. Search in Google Scholar

Naouali, S. and Missaoui, R. (2005). Flexible query answering in data cubes, in A.M. Tjoa and J. Trujillo (Eds), Data Warehousing and Knowledge Discovery, Lecture Notes in Computer Science, Vol 3589, Springer, Berlin/Heidelberg, pp. 221–232.10.1007/11546849_22 Search in Google Scholar

Nowak-Brzezińska, A. and Wakulicz-Deja, A. (2019). Exploration of rule-based knowledge bases: A knowledge engineer’s support, Information Sciences 485(2): 301–318.10.1016/j.ins.2019.02.019 Search in Google Scholar

Ohrn, A. (2000). ROSETTA: Technical reference manual, Technical report, Norwegian University of Science and Technology, Trondheim. Search in Google Scholar

Ohrn, A. and Komorowski, J. (1997). ROSETTA: A rough set toolkit for analysis of data, Workshop on Rough Sets and Soft Computing (RSSC’97), Durham, USA, Vol. 3, pp. 403–407. Search in Google Scholar

Pal, S. (2021). Rough set and deep learning: Some concepts, Academia Letters (1849): 1–6, DOI: 10.20935/AL1849.10.20935/AL1849 Search in Google Scholar

Pal, S.K. (2020). granular mining and big data analytics: Rough models and challenges, Proceedings of the National Academy of Sciences, India, A: Physical Sciences 90: 193–208.10.1007/s40010-018-0578-3 Search in Google Scholar

Pal, S.K., Bhoumik, D. and Chakraborty, D. (2019). Granulated deep learning and Z-numbers in motion detection and object recognition, Neural Computing and Applications 32(4): 1–16.10.1007/s00521-019-04200-1 Search in Google Scholar

Pal, S.K. and Kundu, S. (2017). Granular social network: Model and applications, in A.Y. Zomaya and S. Sakr (Eds), Handbook of Big Data Technologies, Springer, Cham, pp. 617–651.10.1007/978-3-319-49340-4_18 Search in Google Scholar

Pal, S.K. and Meher, S.K. (2013). Natural computing: A problem solving paradigm with granular information processing, Applied Soft Computing 13(9): 3944–3955.10.1016/j.asoc.2013.06.026 Search in Google Scholar

Pal, S.K., Polkowski, L. and Skowron, A. (2004). Rough-Neural Computing-Techniques for Computing with Words, Springer, Berlin.10.1007/978-3-642-18859-6 Search in Google Scholar

Pancerz, K. and Suraj, Z. (2013). A rough set approach to information systems decomposition, Fundamenta Informaticae 127(1–4): 257–272.10.3233/FI-2013-908 Search in Google Scholar

Pandu, S. (2020). MapReduce based improved quick reduct algorithm with granular refinement using vertical partitioning scheme, Knowledge-Based Systems 189: 1872–7409.10.1016/j.knosys.2019.105104 Search in Google Scholar

Pawlak, Z. (1991). RoughSets and Theoretical Aspects of Reasoning About Data, Kluwer, Dordrecht.10.1007/978-94-011-3534-4_7 Search in Google Scholar

Pawlak, Z. and Skowron, A. (2007). Rough sets and Boolean reasoning, Information Sciences 177(1): 41–73.10.1016/j.ins.2006.06.007 Search in Google Scholar

Pedrycz, W. and Bargiela, A. (2002). Granular clustering: A granular signature of data, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics 32(2): 212–224.10.1109/3477.990878 Search in Google Scholar

Pedrycz, W., Gacek, A. and Wang, X. (2015a). Clustering in augmented space of granular constraints: A study in knowledge-based clustering, Pattern Recognition Letters 67: 122–129.10.1016/j.patrec.2015.08.019 Search in Google Scholar

Pedrycz, W. and Gomide, F. (1994). A generalized fuzzy Petri net model, IEEE Transactions on Fuzzy Systems 2(4): 295–301.10.1109/91.324809 Search in Google Scholar

Pedrycz, W., Succi, G., Sillitti, A. and Iljazi, J. (2015b). Data description: A general framework of information granules, Knowledge-Based Systems 80: 98–108.10.1016/j.knosys.2014.12.030 Search in Google Scholar

Pedrycz, W. and Vukovich, G. (2001). Granular neural networks, Neurocomputing 36(1): 205–224.10.1016/S0925-2312(00)00342-8 Search in Google Scholar

Pedrycz, W., Zhao, J., Jing, X. and Yan, Z. (2021). Network traffic classification for data fusion: A survey, Information Fusion 72: 22–47.10.1016/j.inffus.2021.02.009 Search in Google Scholar

Peters, J. (2013). How near are Zdzisław Pawlak’s paintings? Study of merotopic distances between digital picture regions-of-interest, in A. Skowron and Z. Suraj (Eds), Rough Sets and Intelligent Systems—Professor Zdzisław Pawlak in Memoriam, Intelligent Systems Reference Library, Vol 42, Springer, Berlin/Heidelberg, pp. 545–568. Search in Google Scholar

Peters, J. (2020). Computational geometry, topology and physics of visual scenes, in J.F. Peters (Ed.), Computational Geometry, Topology and Physics of Digital Images with Applications, Springer, Cham, pp. 1–85.10.1007/978-3-030-22192-8_1 Search in Google Scholar

Peters, J.F., Skowron, A. and Suraj, Z. (2000). An application of rough set methods in control design, Fundamenta Informaticae 43(1–4): 269–290.10.3233/FI-2000-43123414 Search in Google Scholar

Peters, J.F., Ziaei, K., Ramanna, S. and Ehikioya, S.A. (1998). Adaptive fuzzy rough approximate time controller design methodology: Concepts, Petri net model and application, IEEE International Conference on Systems, Man, and Cybernetics, San Diego, USA, Vol. 3, pp. 2101–2106. Search in Google Scholar

Peters, J. and Naimpally, S. (2012). Applications of near sets, Notices of the American Mathematical Society 59: 536–542.10.1090/noti817 Search in Google Scholar

Pierzchała, D. (2014). Application of ontology and rough set theory to information sharing in multi-resolution combat, in J. Sobecki et al. (Eds), Advanced Approaches to Intelligent Information and Database Systems, Springer, Cham, pp. 193–203.10.1007/978-3-319-05503-9_19 Search in Google Scholar

Pięta, P., Szmuc, T. and Kluza, K. (2019). Comparative overview of rough set toolkit systems for data analysis, 3rd International Conference of Computational Methods in Engineering Science (CMES18), Kazimierz Dolny, Poland, pp. 1–7. Search in Google Scholar

Polkowski, L. (2005). Rough-fuzzy-neurocomputing based on rough mereological calculus of granules, International Journal of Hybrid Intelligent Systems 2(2): 91–108.10.3233/HIS-2005-2202 Search in Google Scholar

Polkowski, L. (2011). Approximate Reasoning by Parts: An Introduction to Rough Mereology, Springer, Berlin/Heidelberg.10.1007/978-3-642-22279-5 Search in Google Scholar

Polkowski, L. (2020). On the compactness property of mereological spaces, Fundamenta Informaticae 172(1): 73–95.10.3233/FI-2020-1893 Search in Google Scholar

Polkowski, L. and Osmialowski, P. (2010). Navigation for mobile autonomous robots and their formations: An application of spatial reasoning induced from rough mereological geometry, in A. Barrera (Ed.), Mobile Robots Navigation, IntechOpen, London, DOI: 10.5772/8987, https://www.intechopen.com/chapters/10248.10.5772/8987 Search in Google Scholar

Polkowski, L. and Skowron, A. (1996). Rough mereological approach to knowledge-based distributed AI, 3rd World Congress on Expert Systems, Seoul, Korea, pp. 774–781. Search in Google Scholar

Polkowski, L. and Skowron, A. (2000). Rough mereology in information systems with applications to qualitative spatial reasoning, Fundamenta Informaticae 43(1–4): 291–320.10.3233/FI-2000-43123415 Search in Google Scholar

Prędki, B., Słowiński, R., Stefanowski, J., Susmaga, R. and Wilk, S. (1998). ROSE—Software implementation of the rough set theory, in A.S. Polkowski (Ed.), Rough Sets and Current Trends in Computing, Springer, Berlin, pp. 605–608.10.1007/3-540-69115-4_85 Search in Google Scholar

Prędki, B. and Wilk, S. (1999). Rough set based data exploration using ROSE system, in A.S.Z.W. Ras (Ed.), Foundations of Intelligent Systems, Springer, Berlin, pp. 172–180.10.1007/BFb0095102 Search in Google Scholar

Przyborowski, M., Tajmajer, T., Grad, L., Janusz, A., Biczyk, P. and Ślęzak, D. (2018). Toward machine learning on granulated data: A case of compact autoencoder-based representations of satellite images, 2018 IEEE International Conference on Big Data, Seattle, USA, pp. 2657–2662. Search in Google Scholar

Przybyła-Kasperek, M. and Wakulicz-Deja, A. (2013). Application of reduction of the set of conditional attributes in the process of global decision-making, Fundamenta Informaticae 122(4): 327–355.10.3233/FI-2013-793 Search in Google Scholar

Przybyła-Kasperek, M. and Wakulicz-Deja, A. (2014). A dispersed decision-making system—The use of negotiations during the dynamic generation of a systems structure, Information Sciences 288(1): 194–219.10.1016/j.ins.2014.07.032 Search in Google Scholar

Przybyła-Kasperek, M. and Wakulicz-Deja, A. (2016a). Global decision-making in multi-agent decision-making system with dynamically generated disjoint clusters, Applied Software Computing 40: 603–615.10.1016/j.asoc.2015.12.016 Search in Google Scholar

Przybyła-Kasperek, M. and Wakulicz-Deja, A. (2016b). The strength of coalition in a dispersed decision support system with negotiations, European Journal of Operational Research 252(3): 947–968.10.1016/j.ejor.2016.02.008 Search in Google Scholar

Przybyła-Kasperek, M. and Wakulicz-Deja, A. (2017). Comparison of fusion methods from the abstract level and the rank level in a dispersed decision-making system, International Journal of General Systems 46(4): 1–28.10.1080/03081079.2017.1314276 Search in Google Scholar

Qiana, Y., Lianga, X., Lin, G., Guo, Q. and Liang, J. (2017). Local multigranulation decision-theoretic rough sets, International Journal of Approximate Reasoning 82(6): 119–137.10.1016/j.ijar.2016.12.008 Search in Google Scholar

Qiong, C., Huang, M., Wang, H. and Xu, G. (2021). A feature discretization method based on fuzzy rough sets for high-resolution remote sensing big data under linear spectral model, IEEE Transactions on Fuzzy Systems: 1–1, (early access).10.1109/TFUZZ.2021.3058020 Search in Google Scholar

Qu, W., Kong, L., Wu, K., Tang, F. and Chen, G. (2019). Distributed fuzzy rough set for big data analysis in cloud computing, IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), Tianjin, China, pp. 109–116. Search in Google Scholar

Quinlan, J.R. (1983). Learning efficient classification procedures and their application to chess end games, in R.S. Michalski et al. (Eds), Machine Learning: Symbolic Computation, Springer, Heidelberg, pp. 463–482. Search in Google Scholar

Quinlan, J.R. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann, San Francisco. Search in Google Scholar

Rajesh, T. and Malar, R.S.M. (2013). Rough set theory and feed forward neural network based brain tumor detection in magnetic resonance images, International Conference on Advanced Nanomaterials & Emerging Engineering Technologies, Chennai, India, pp. 240–244. Search in Google Scholar

Riaz, S., Arshad, A. and Jiao, L. (2019). A semi-supervised CNN with fuzzy rough c-mean for image classification, IEEE Access 7: 49641–49652.10.1109/ACCESS.2019.2910406 Search in Google Scholar

ROSE (1998). ROSE—Rough Set Data Explorer, https://idss.cs.put.poznan.pl/site/rose.html. Search in Google Scholar

ROSETTA (1994). ROSETTA—A Rough Set Toolkit for Analysis of Data, http://bioinf.icm.uu.se/rosetta/downloads.php. Search in Google Scholar

RSES (2005). RSES—Rough Set Exploration System, https://www.mimuw.edu.pl/~szczuka/rses. Search in Google Scholar

RSlib (2019). Rseslib 3—Rough Set and Machine Learning Open Source in Java, http://rsproject.mimuw.edu.pl/help.html. Search in Google Scholar

Riza, L.S., Janusz, A., Bergmeir, C., Cornelis, C., Herrera, F.,Ślęzak, D. and Benítez, J.M. (2014). Implementing algorithms of rough set theory and fuzzy rough set theory in the R package RoughSets, Information Sciences 287: 68–89.10.1016/j.ins.2014.07.029 Search in Google Scholar

Sachin, J. and Shubhangi, S. (2015). Knowledge acquisition using parallel rough set and MapReduce from big data, International Conference on Information Processing (ICIP), Pune, India, pp. 16–20. Search in Google Scholar

Sakai, H., Nakata, M. and Watada, J. (2020). NIS—Apriori-based rule generation with three-way decisions and its application system in SQL, Information Sciences 507: 755–771.10.1016/j.ins.2018.09.008 Search in Google Scholar

Sedkaoui, S. (2018). Data Analytics and Big Data, Wiley, Hoboken.10.1002/9781119528043 Search in Google Scholar

Shan, H., Xiaoning, J. and Jianxun, L. (2016). An assessment method for the impact of missing data in the rough set-based decision fusion, Intelligent Data Analysis 20(6): 1267–1284.10.3233/IDA-150242 Search in Google Scholar

Shi, W., Gong, Y., Ding, C., Ma, Z., Tao, X. and Zheng, N. (2015). Transductive semi-supervised deep learning using min-max features, Proceedings of the European Conference on Computer Vision (ECCV), Cham, Switzerland, pp. 299–315. Search in Google Scholar

Simiński, R. and Wakulicz-Deja, A. (2003). Decision units as a tool for rule base modeling and verification, in M.A. Klopotek et al. (Eds), Intelligent Information Processing and Web Mining, Springer, Berlin/Heidelberg, pp. 553–556.10.1007/978-3-540-36562-4_60 Search in Google Scholar

Sinaga, K.P. and Yang, M.-S. (2020). Unsupervised k-means clustering algorithm, IEEE Access 8: 80716–80727.10.1109/ACCESS.2020.2988796 Search in Google Scholar

Skowron, A., Bazan, J. and Wojnarski, M. (2009). Interactive rough-granular computing in pattern recognition, in S. Chaudhury et al. (Eds.), Pattern Recognition and Machine Intelligence, Lecture Notes in Computer Science, Vol. 5909, Springer, Berlin/Heidelberg, pp. 92–97.10.1007/978-3-642-11164-8_16 Search in Google Scholar

Skowron, A. and Dutta, S. (2017). From information systems to interactive information systems, in G. Wang et al. (Eds), Thriving Rough Sets, Studies in Computational Intelligence, Vol. 708, Springer, Cham, pp. 207–223.10.1007/978-3-319-54966-8_10 Search in Google Scholar

Skowron, A. and Dutta, S. (2018). Rough sets: Past, present, and future, Natural Computing 17: 855–876.10.1007/s11047-018-9700-3624480430524217 Search in Google Scholar

Skowron, A., Jankowski, A. and Dutta, S. (2016). Toward problem solving support based on big data and domain knowledge: Interactive granular computing and adaptive judgement, in N. Japkowicz and J. Stefanowski (Eds), Big Data Analysis: New Algorithms for a New Society, Studies in Big Data, Vol. 16, Springer, Cham, pp. 49–90.10.1007/978-3-319-26989-4_3 Search in Google Scholar

Skowron, A. and Nguyen, H.S. (1999). Boolean reasoning scheme with some applications in data mining, in J.M. Żytkow and J. Rauch (Eds), Principles of Data Mining and Knowledge Discovery, Springer, Berlin, pp. 107–115.10.1007/978-3-540-48247-5_12 Search in Google Scholar

Skowron, A., Ramanna, S. and Peters, J. (2006). Conflict analysis and information systems: A rough set approach, in G.Y. Wang et al. (Eds), Rough Sets and Knowledge Technology, Lecture Notes in Computer Science, Vol. 4062, Springer, Berlin/Heidelberg, pp. 233–240.10.1007/11795131_34 Search in Google Scholar

Skowron, A. and Stepaniuk, J. (1996). Tolerance approximation spaces, Fundamenta Informaticae 27(2–3): 245–253.10.3233/FI-1996-272311 Search in Google Scholar

Skowron, A. and Stepaniuk, J. (2001). Information granules: Towards foundations of granular computing, International Journal of Intelligent Systems 16(1): 57–85.10.1002/1098-111X(200101)16:1<57::AID-INT6>3.0.CO;2-Y Search in Google Scholar

Skowron, A. and Suraj, Z. (Eds) (2013a). Rough Sets and Intelligent Systems—Professor Zdzisław Pawlak in Memoriam, Volume 1, Springer, Berlin/Heidelberg.10.1007/978-3-642-30341-8 Search in Google Scholar

Skowron, A. and Suraj, Z. (Eds) (2013b). Rough Sets and Intelligent Systems—Professor Zdzisław Pawlak in Memoriam, Volume 2, Springer, Berlin/Heidelberg.10.1007/978-3-642-30341-8 Search in Google Scholar

Skowron, A. and Wasilewski, P. (2011a). Information systems in modeling interactive computations on granules, Theoretical Computer Science 412(42): 5939–5959.10.1016/j.tcs.2011.05.045 Search in Google Scholar

Skowron, A. and Wasilewski, P. (2011b). Toward interactive rough-granular computing, Control and Cybernetics 40(2): 213–235. Search in Google Scholar

Skowron, A., Yuhua, Q., Xinyan, L., Qi, W., Liang, J., Bing, L., Yiyu, Y., Jianmin, M. and Dang, C. (2018). Local rough set: A solution to rough data analysis in big data, International Journal of Approximate Reasoning 97: 38–63.10.1016/j.ijar.2018.01.008 Search in Google Scholar

Skowron, A. (2001). Approximate reasoning by agents in distributed environments, Proceedings of the 2nd Asia-Pacific Conference on Intelligent Agent Technology, Maebashi, Japan, pp. 28–39. Search in Google Scholar

Ślęzak, D., Glick, R., Betliński, P. and Synak, P. (2018). A new approximate query engine based on intelligent capture and fast transformations of granulated data summaries, Journal of Intelligent Information Systems 50: 385–414.10.1007/s10844-017-0471-6 Search in Google Scholar

Ślęzak, D., Synak, P., Toppin, G., Wróblewski, J. and Borkowski, J. (2012). Rough SQL—Semantics and execution, in S. Greco et al. (Eds), Advances in Computational Intelligence, Communications in Computer and Information Science, Vol. 298, Springer, Berlin/Heidelberg, pp. 570–579.10.1007/978-3-642-31715-6_60 Search in Google Scholar

Ślęzak, D. and Eastwood, V. (2009). Data warehouse technology by Infobright, Proceedings of SIGMOD, Providence, USA, pp. 841–846. Search in Google Scholar

Ślęzak, D., Grzegorowski, M., Janusz, A., Kozielski, M., Nguyen, S.H., Sikora, M., Stawicki, S. and Wróbel, Ł. (2018). A framework for learning and embedding multi-sensor forecasting models into a decision support system: A case study of methane concentration in coal mines, Information Sciences 451–452: 112–133.10.1016/j.ins.2018.04.026 Search in Google Scholar

Ślęzak, D., Synak, P., Wróblewski, J. and Toppin, G. (2010). Infobright analytic database engine using rough sets and granular computing, IEEE International Conference on Granular Computing, San Jose, USA, pp. 432–437. Search in Google Scholar

Ślęzak, D., Wróblewski, J., Eastwood, V. and Synak, P. (2008). Brighthouse: An analytic data warehouse for ad-hoc queries, Proceedings of VLDB Endowment 1(2): 1337–1345.10.14778/1454159.1454174 Search in Google Scholar

Stefanowski, J., Krawiec, K. and Wrembel, R. (2017). Exploring complex and big data, International Journal of Applied Mathematics and Computer Science 27(4): 669–679, DOI: 10.1515/amcs-2017-0046.10.1515/amcs-2017-0046 Search in Google Scholar

Sulaiman, S., Shamsuddin, S.M. and Abraham, A. (2009). Rough web caching, in A. Abraham et al. (Eds), Rough Set Theory: A True Landmark in Data Analysis, Studies in Computational Intelligence, Vol. 174, Springer, Berlin/Heidelberg, pp. 187–211.10.1007/978-3-540-89921-1_7 Search in Google Scholar

Sun, Y.Q., Wu, L.Y., Zeng, Y. (2019). A decision-making method for weapon demonstration based on fuzzy theory and Bayesian rough sets, ICMSS 2019: Proceedings of the 3rd International Conference on Management Engineering, Wuhan, China, p. 74–77. Search in Google Scholar

Sun, L., Yin, T., Ding, W., Qian, Y. and Xu, J. (2021). feature selection with missing labels using multilabel fuzzy neighborhood rough sets and maximum relevance minimum redundancy, IEEE Transactions on Fuzzy Systems: 1–1, (early access).10.1109/TFUZZ.2021.3053844 Search in Google Scholar

Suraj, Z., Grochowalski, P. and Bandyopadhyay, S. (2015). Optimization of backward fuzzy reasoning based on rule knowledge, Proceedings of the International Workshop on Concurrency, Specification and Programming, Rzeszów, Poland, pp. 177–186. Search in Google Scholar

Tang, J., Wang, J. and Wu, C. (2019). Research progress on network public opinion based on rough sets from the big data perspective, IEEE 8th Joint International Information Technology and Artificial Intelligence Conference, Chongqing, China, pp. 1074–1077. Search in Google Scholar

Thuy, N.N. and Wongthanavasu, S. (2021). A novel feature selection method for high-dimensional mixed decision tables, IEEE Transactions on Neural Networks and Learning Systems: 1–14, (early access).10.1109/TNNLS.2020.304808033449885 Search in Google Scholar

UCI (2021). UCI Machine Learning Repository, https://archive.ics.uci.edu/ml/index.php. Search in Google Scholar

Venkatraman, R. and Venkatraman, S. (2019). Big data infrastructure, Proceedings of the 3rd International Conference on Big Data and Internet of Things, BDIOT 2019, New York, USA, pp. 13–17. Search in Google Scholar

Verbiest, N., Cornelis, C. and Herrera, F. (2013). OWA-FRPS: A prototype selection method based on ordered weighted average fuzzy rough set theory, in D. Ciucci et al. (Eds), Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Lecture Notes in Computer Science, Vol 8170, Springer, Berlin/Heidelberg. pp. 180–190.10.1007/978-3-642-41218-9_19 Search in Google Scholar

Vluymans, S., Asfoor, H., Saeys, Y., Cornelis, Y., Tolentino, M., Teredesai, A. and De Cock, M. (2015). Distributed fuzzy rough prototype selection for big data regression, Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS)/5th World Conference on Soft Computing (WConSC), Redmond, USA, pp. 1–6. Search in Google Scholar

Vluymans, S., Cornelis, C., Herrera, F. and Saeys, Y. (2018a). Multi-label classification using a fuzzy rough neighborhood consensus, Information Sciences 433–434(9): 96–114.10.1016/j.ins.2017.12.034 Search in Google Scholar

Vluymans, S., Fernández, A., Saeys, Y., Cornelis, C. and Herrera, F. (2018b). Dynamic affinity-based classification of multi-class imbalanced data with one-versus-one decomposition: A fuzzy rough set approach, Knowledge and Information Systems 56(1): 55–84.10.1007/s10115-017-1126-1 Search in Google Scholar

Wakulicz-Deja, A., Boryczka, M. and Paszek, P. (1998). Discretization of continuous attributes on decision system in mitochondrial encephalomyopathies, 1st International Conference, RSCTC’98, Warsaw, Poland, pp. 483–490. Search in Google Scholar

Wakulicz-Deja, A., Nowak-Brzezińska, A. and Jach, T. (2011). Inference processes in decision support systems with incomplete knowledge, in J. Yao et al. (Eds), Rough Sets and Knowledge Technology, Springer, Berlin/Heidelberg, pp. 616–625.10.1007/978-3-642-24425-4_78 Search in Google Scholar

Wakulicz-Deja, A., Nowak-Brzezińska, A. and Przybyła-Kasperek, M. (2013). Complex decision systems and conflicts analysis problem, Fundamenta Informaticae 127(1–4): 341–356.10.3233/FI-2013-913 Search in Google Scholar

Wakulicz-Deja, A. and Przybyła-Kasperek, M. (2016). Pawlak’s conflict model: Directions of development, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, pp. 191–197. Search in Google Scholar

Wan, R. and Li, Y. (2019). Clustering data stream with rough set, ICCPR’19: Proceedings of the 8th International Conference on Computing and Pattern Recognition, Beijing, China, pp. 52–56. Search in Google Scholar

Wang, G., Li, T., Zhang, P., Huang, Q. and Chen, H. (2021). Double-local rough sets for efficient data mining, Information Sciences 571(2–3): 475–498.10.1016/j.ins.2021.05.007 Search in Google Scholar

Wang, S., Li, T., Luo, C. and Fujita, H. (2016a). Efficient updating rough approximations with multidimensional variation of ordered data, Information Sciences 372(7): 690–708.10.1016/j.ins.2016.08.044 Search in Google Scholar

Wang, X., Wang, L., Li, Y., Wang, B., Hei, X. and Cao, Z. (2016b). A quick algorithm for rule acquisition based on distributed domputing, IEEE International Conference on Smart Cloud, New York, USA, pp. 278–281.10.1109/SmartCloud.2016.27 Search in Google Scholar

Watt, J., Borhani, R. and Katsaggelos, A.K. (2016). Machine Learning Refined: Foundations, Algorithms, and Applications, Cambridge University Press, Cambridge.10.1017/CBO9781316402276 Search in Google Scholar

Wei, W. and Liang, J. (2019). Information fusion in rough set theory: An overview, Information Fusion 48: 107–118.10.1016/j.inffus.2018.08.007 Search in Google Scholar

WEKA (2009). WEKA—Waikato Environment for Knowledge Analysis, http://users.aber.ac.uk/rkj/book/wekafull.jar. Search in Google Scholar

Wilkinson, M., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., Bonino da Silva Santos, L.O., Bourne, P., Bouwman, J., Brookes, A., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C., Finkers, R. and Mons, B. (2016). The FAIR guiding principles for scientific data management and stewardship, Scientific Data 3: 1–9, Article 160018.10.1038/sdata.2016.18479217526978244 Search in Google Scholar

Wnuk, M., Stawicki, S. and Ślęzak, D. (2020). Reinventing infobright’s concept of rough calculations on granulated tables for the purpose of accelerating modern data processing frameworks, IEEE International Conference on Big Data (Big Data), Atlanta, USA, pp. 5405–5412. Search in Google Scholar

Wu, W.-Z. and Leung, Y. (2011). Theory and applications of granular labelled partitions in multi-scale decision tables, Information Sciences 181(18): 3878–3897.10.1016/j.ins.2011.04.047 Search in Google Scholar

Wu, H.S.P. and Prasad S. (2018). Semi-supervised deep learning using pseudo labels for hyperspectral image classification, IEEE Transactions on Image Processing 27(3): 1259–1270.10.1109/TIP.2017.277283629990156 Search in Google Scholar

Xia, S., Zhang, Z., Li, W., Wang, G., Giem, E. and Chen, Z. (2020). GBNRS: A novel rough set algorithm for fast adaptive attribute reduction in classification, IEEE Transactions on Knowledge and Data Engineering: 1–1, (early access).10.1109/TKDE.2020.2997039 Search in Google Scholar

Xiaoguang, Y., Qisong, Z. and Guojun, S. (2018). Research on classification of LBS service facilities based on rough sets neural network, Chinese Control and Decision Conference (CCDC), Shenyang, China, pp. 2843–2848. Search in Google Scholar

Xie H., Hu, X., Peng, Z., Yao, X. and Chen, Y. (2018). A method of electricity consumption behavior analysis based on rough set fuzzy clustering, 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, pp. 1–5. Search in Google Scholar

Xu, W. and Yu, J. (2017). A novel approach to information fusion in multi-source datasets: A granular computing viewpoint, Information Sciences 378(C): 410–423.10.1016/j.ins.2016.04.009 Search in Google Scholar

Yang, X., Li, T., Dun, D.L., Chen, H. and Luo, C. (2017). A unified framework of dynamic three-way probabilistic rough sets, Information Sciences 420(C): 126–147.10.1016/j.ins.2017.08.053 Search in Google Scholar

Yao, Y. (2007). Decision-theoretic rough set models, in J. Yao et al. (Eds), Rough Sets and Knowledge Technology, Lecture Notes in Computer Science, Vol. 4481, Springer, Berlin/Heidelberg, pp. 1–12.10.1007/978-3-540-72458-2_1 Search in Google Scholar

Yap, C.E. and Kim, M.H. (2013). Instance-based ontology matching with rough set features selection, International Conference on IT Convergence and Security (ICITCS), Macao, China, pp. 1–4. Search in Google Scholar

Yeganejou, M. and Dick, S. (2018). Classification via deep fuzzy c-means clustering, IEEE International Conference on Fuzzy Systems, FUZZ-IEEE, Rio de Janeiro, Brazil, pp. 1–6. Search in Google Scholar

Yuan, Z., Chen, H., Xie, P., Zhang, P., Liu, J. and Li, T. (2021). Attribute reduction methods in fuzzy rough set theory: An overview, comparative experiments, and new directions, Applied Soft Computing 107(2): 107353.10.1016/j.asoc.2021.107353 Search in Google Scholar

Yun, S. (2014). Research of big data analysis on rough set and electromagnetism-like mechanism algorithm, IEEE International Conference on Computer and Information Technology, Xi’an, China, pp. 923–926. Search in Google Scholar

Zadeh, L. (1965). Fuzzy sets information and control, Information and Control 8(3): 338–353.10.1016/S0019-9958(65)90241-X Search in Google Scholar

Zadeh, L.A. (1997). Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic, Fuzzy Sets and Systems 90(2): 111–127.10.1016/S0165-0114(97)00077-8 Search in Google Scholar

Zhang, C., Li, D., Kang, X., Song, D., Kumar, A. and Said, B. (2020). Neutrosophic fusion of rough set theory: An overview, Computers in Industry 115: 103117.10.1016/j.compind.2019.07.007 Search in Google Scholar

Zhang, J., Li, T. and Pan, Y. (2012). Parallel rough set based knowledge acquisition using MapReduce from big data, BigMine’12: Proceedings of the 1st International Workshop on Big Data, Beijing, China, pp 20–27.10.1145/2351316.2351320 Search in Google Scholar

Zhao, R., Wang, Y., Liu, Q., Dong, D. and Li, C. (2020). Knowledge acquisition model for stability situation judgement used in crowd evacuation, 5th International Conference on Computer and Communication Systems (ICCCS), Shanghai, China, pp. 510–514. Search in Google Scholar

Zhou, C. and Lin, Z. (2018). Study on fraud detection of telecom industry based on rough set, IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, USA, pp. 15–19. Search in Google Scholar

Zhou, S., Chen, Q. and Wang, X. (2014). Fuzzy deep belief networks for semi-supervised sentiment classification, Neurocomputing 131: 312–322.10.1016/j.neucom.2013.10.011 Search in Google Scholar

Ziarko, W. (1993). Variable precision rough set model, Journal of Computer and System Sciences 46(1): 39–59.10.1016/0022-0000(93)90048-2 Search in Google Scholar

eISSN:
2083-8492
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Mathematics, Applied Mathematics