À propos de cet article

Citez

Alsubaie, N., Trahearn, N., Raza, S., Snead, D. and Rajpoot, N. (2017). Stain deconvolution using statistical analysis of multi-resolution stain colour representation, PLOS ONE 12(1): e0169875.10.1371/journal.pone.0169875522679928076381 Search in Google Scholar

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018). Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal for Clinicians 68(6): 394–424.10.3322/caac.2149230207593 Search in Google Scholar

Cui, Y., Zhang, G., Liu, Z., Xiong, Z. and Hu, J. (2018). A deep learning algorithm for one-step contour aware nuclei segmentation of histopathological images, arXiv: 1803.02786. Search in Google Scholar

Dudzińska, D. and Piórkowski, A. (2020). Tissue differentiation based on classification of morphometric features of nuclei, in H. Florez and S. Misra (Eds), Applied Informatics, Springer, Cham, pp. 420–432.10.1007/978-3-030-61702-8_29 Search in Google Scholar

Fondón, I., Sarmiento, A., García, A.I., Silvestre, M., Eloy, C., Polónia, A. and Aguiar, P. (2018). Automatic classification of tissue malignancy for breast carcinoma diagnosis, Computers in Biology and Medicine 96: 41–51.10.1016/j.compbiomed.2018.03.00329544146 Search in Google Scholar

Guan, H., Zhang, Y., Cheng, H.-D. and Tang, X. (2020). Bounded-abstaining classification for breast tumors in imbalanced ultrasound images, International Journal of Applied Mathematics and Computer Science 30(2): 325–336, DOI: 10.34768/amcs-2020-0025. Search in Google Scholar

Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning. Data Mining, Inference, and Prediction, Second Edition, Springer Series in Statistics, Springer, New York.10.1007/978-0-387-84858-7 Search in Google Scholar

Hayakawa, T., Prasath, S., Kawanaka, H., Aronow, B. and Tsuruoka, S. (2019). Computational nuclei segmentation methods in digital pathology: A survey, Archives of Computational Methods in Engineering 28: 1–13.10.1007/s11831-019-09366-4 Search in Google Scholar

Höfener, H., Homeyer, A., Weiss, N., Molin, J., Lundström, C.F. and Hahn, H.K. (2018). Deep learning nuclei detection: A simple approach can deliver state-of-the-art results, Computerized Medical Imaging and Graphics 70: 43–52.10.1016/j.compmedimag.2018.08.01030286333 Search in Google Scholar

Husham, A., Hazim Alkawaz, M., Saba, T., Rehman, A. and Saleh Alghamdi, J. (2016). Automated nuclei segmentation of malignant using level sets, Microscopy Research and Technique 79(10): 993–997.10.1002/jemt.2273327476682 Search in Google Scholar

Irshad, H., Veillard, A., Roux, L. and Racoceanu, D. (2014). Methods for nuclei detection, segmentation, and classification in digital histopathology: A review—Current status and future potential, IEEE Reviews in Biomedical Engineering 7: 97–114.10.1109/RBME.2013.229580424802905 Search in Google Scholar

James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R, Springer Series in Statistics, Springer, New York.10.1007/978-1-4614-7138-7 Search in Google Scholar

Jassem, J. and Krzakowski, M. (2018). Breast cancer, Oncology in Clinical Practice 14(4): 171–215. Search in Google Scholar

Kantavat, P., Kijsirikul, B., Songsiri, P., Fukui, K.-I. and Numao, M. (2018). Efficient decision trees for multi-class support vector machines using entropy and generalization error estimation, International Journal of Applied Mathematics and Computer Science 28(4): 705–717, DOI: 10.2478/amcs-2018-0054.10.2478/amcs-2018-0054 Search in Google Scholar

Kowal, M. and Filipczuk, P. (2014). Nuclei segmentation for computer-aided diagnosis of breast cancer, International Journal of Applied Mathematics and Computer Science 24(1): 19–31, DOI: 10.2478/amcs-2014-0002.10.2478/amcs-2014-0002 Search in Google Scholar

Kowal, M., Skobel, M. and Nowicki, N. (2018). The feature selection problem in computer-assisted cytology, International Journal of Applied Mathematics and Computer Science 28(4): 759–770, DOI: 10.2478/amcs-2018-0058.10.2478/amcs-2018-0058 Search in Google Scholar

Koyuncu, C.F., Akhan, E., Ersahin, T., Cetin-Atalay, R. and Gunduz-Demir, C. (2016). Iterative h-minima-based marker-controlled watershed for cell nucleus segmentation, Cytometry Part A 89(4): 338–349.10.1002/cyto.a.2282426945784 Search in Google Scholar

Landini, G., Rueden, C., Schindelin, J., Hiner, M. and Pavie, B. (2004). Image colour deconvolution, https://imagej.net/Colour_Deconvolution. Search in Google Scholar

Litherland, J.C. (2002). Should fine needle aspiration cytology in breast assessment be abandoned?, Clinical Radiology 57(2): 81–84.10.1053/crad.2001.087511977938 Search in Google Scholar

Macenko, M., Niethammer, M., Marron, J.S., Borland, D., Woosley, J.T., Guan, X., Schmitt, C. and Thomas, N.E. (2009). A method for normalizing histology slides for quantitative analysis, IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), Boston, USA, pp. 1107–1110. Search in Google Scholar

Mittal, H. and Saraswat, M. (2019). An automatic nuclei segmentation method using intelligent gravitational search algorithm based superpixel clustering, Swarm and Evolutionary Computation 45: 15–32.10.1016/j.swevo.2018.12.005 Search in Google Scholar

Naylor, P., Laé, M., Reyal, F. and Walter, T. (2017). Nuclei segmentation in histopathology images using deep neural networks, IEEE 14th International Symposium on Biomedical Imaging, Melbourne, Australia, pp. 933–936. Search in Google Scholar

Paramanandam, M., O‘Byrne, M., Ghosh, B., Mammen, J.J., Manipadam, M.T., Thamburaj, R. and Pakrashi, V. (2016). Automated segmentation of nuclei in breast cancer histopathology images, PLOS ONE 11(9): 1–15.10.1371/journal.pone.0162053502986627649496 Search in Google Scholar

Piorkowski, A. and Gertych, A. (2019). Color normalization approach to adjust nuclei segmentation in images of hematoxylin and eosin stained tissue, in E. Piętka et al. (Eds), Information Technology in Biomedicine, Springer, Cham, pp. 393–406.10.1007/978-3-319-91211-0_35 Search in Google Scholar

R Core Team (2019). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, https://www.R-project.org. Search in Google Scholar

Rabinovich, A., Agarwal, S., Laris, C., Price, J. and Belongie, S. (2004). Unsupervised color decomposition of histologically stained tissue samples, in S. Thrun et al. (Eds), Advances in Neural Information Processing Systems 16, MIT Press, Cambridge, pp. 667–674. Search in Google Scholar

Ronneberger, O., P.Fischer and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation, in N. Navab et al. (Eds), Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, Cham, pp. 234–241.10.1007/978-3-319-24574-4_28 Search in Google Scholar

Ruifrok, A.C. and Johnston, D.A. (2001). Quantification of histochemical staining by color deconvolution, Analytical & Quantitative Cytology & Histology 23(4): 291–299. Search in Google Scholar

Sadanandan, S.K., Ranefall, P., Le Guyader, S. and Wahlby, C. (2017). Automated training of deep convolutional neural networks for cell segmentation, Scientific Reports 7(7860): 1–7.10.1038/s41598-017-07599-6555280028798336 Search in Google Scholar

Santanu, R., Alok, J., Shyam, L. and Jyoti, K. (2018). A study about color normalization methods for histopathology images, Micron 114: 42–61.10.1016/j.micron.2018.07.00530096632 Search in Google Scholar

Schindelin, J., Arganda-Carreras, I. Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P. and Albert A. (2012). FIJI: An open-source platform for biological-image analysis, Nature Methods 9: 676–682.10.1038/nmeth.2019385584422743772 Search in Google Scholar

Skobel, M., Kowal, M., Korbicz, J. and Obuchowicz, A. (2019). Cell nuclei segmentation using marker-controlled watershed and Bayesian object recognition, in E. Piętka et al. (Eds), International Conference on Information Technologies in Biomedicine, Springer International Publishing, Cham, pp. 407–418.10.1007/978-3-319-91211-0_36 Search in Google Scholar

Spanhol, F.A., Oliveira, L.S., Petitjean, C. and Heutte, L. (2016). Breast cancer histopathological image classification using convolutional neural networks, International Joint Conference on Neural Networks, Vancouver, Canada, pp. 2560–2567. Search in Google Scholar

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological) 58(1): 267–288.10.1111/j.2517-6161.1996.tb02080.x Search in Google Scholar

Veta, M., van Diest, P.J., Kornegoor, R., Huisman, A., Viergever, M.A. and Pluim, J.P.W. (2013). Automatic nuclei segmentation in H&E stained breast cancer histopathology images, PLOS ONE 8(7):e70221.10.1371/journal.pone.0070221372642123922958 Search in Google Scholar

Vincent, L. and Soille, P. (1991). Watersheds in digital spaces: An efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6): 583–598.10.1109/34.87344 Search in Google Scholar

Wang, D., Khosla, A., Gargeya, R., Irshad, H. and Beck, A.H. (2016). Deep learning for identifying metastatic breast cancer, arXiv: 1606.05718. Search in Google Scholar

Xing, F. and Yang, L. (2016). Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: A comprehensive review, IEEE Reviews in Biomedical Engineering 9: 234–263.10.1109/RBME.2016.2515127523346126742143 Search in Google Scholar

Yang, X., Li, H. and Zhou, X. (2006). Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy, IEEE Transactions on Circuits and Systems I: Regular Papers 53(11): 2405–2414.10.1109/TCSI.2006.884469 Search in Google Scholar

eISSN:
2083-8492
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Mathematics, Applied Mathematics