This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Al-Assal K, Martinez AC, Torrinhas RS, Cardinelli C, Waitzberg D. Gut microbiota and obesity. Clin Nutr Exp. 2018 Aug;20:60–64. https://doi.org/10.1016/j.yclnex.2018.03.001Al-AssalKMartinezACTorrinhasRSCardinelliCWaitzbergD.Gut microbiota and obesity. Clin Nutr Exp. 2018Aug;20:60–64. https://doi.org/10.1016/j.yclnex.2018.03.001Search in Google Scholar
Alhinai EA, Walton GE, Commane DM. The Role of the gut microbiota in colorectal cancer causation. Int J Mol Sci. 2019 Oct; 20(21):5295. https://doi.org/10.3390/ijms20215295AlhinaiEAWaltonGECommaneDM.The Role of the gut microbiota in colorectal cancer causation. Int J Mol Sci. 2019Oct; 20(21):5295. https://doi.org/10.3390/ijms20215295Search in Google Scholar
Brennan CA, Garrett WS. Gut Microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol. 2016 Sep;70:395–411. https://doi.org/10.1146/annurev-micro-102215-095513BrennanCAGarrettWS.Gut Microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol. 2016Sep;70:395–411. https://doi.org/10.1146/annurev-micro-102215-095513Search in Google Scholar
Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: friend or foe? Gut. 2020 Oct;69(10):1867–1876. https://doi.org/10.1136/gutjnl-2020-321153ChengWYWuCYYuJ.The role of gut microbiota in cancer treatment: friend or foe?Gut. 2020Oct;69(10):1867–1876. https://doi.org/10.1136/gutjnl-2020-321153Search in Google Scholar
Davis CD. The gut microbiome and its role in obesity. Nutr Today. 2016 Jul-Aug;51(4):167–174. https://doi.org/10.1097/NT.0000000000000167DavisCD.The gut microbiome and its role in obesity. Nutr Today. 2016Jul-Aug;51(4):167–174. https://doi.org/10.1097/NT.0000000000000167Search in Google Scholar
De Simeis D, Serra S. Actinomycetes: A Never-ending source of bioactive compounds – an overview on antibiotics production. Antibiotics. 2021 Apr;10(5):483. https://doi.org/10.3390/antibiotics10050483De SimeisDSerraS.Actinomycetes: A Never-ending source of bioactive compounds – an overview on antibiotics production. Antibiotics. 2021Apr;10(5):483. https://doi.org/10.3390/antibiotics10050483Search in Google Scholar
Dinsdale EA, Edwards RA, Bailey BA, Tuba I, Akhter S, McNair K, Schmieder R, Apkarian N, Creek M, Guan E, et al. Multivariate analysis of functional metagenomes. Front Genet. 2013 Apr;4:41. https://doi.org/10.3389/fgene.2013.00041DinsdaleEAEdwardsRABaileyBATubaIAkhterSMcNairKSchmiederRApkarianNCreekMGuanEMultivariate analysis of functional metagenomes. Front Genet. 2013Apr;4:41. https://doi.org/10.3389/fgene.2013.00041Search in Google Scholar
Dorrestein PC, Mazmanian SK, Knight R. Finding the missing links among metabolites, microbes, and the host. Immunity. 2014 Jun;40(6):824–832. https://doi.org/10.1016/j.immuni.2014.05.015DorresteinPCMazmanianSKKnightR.Finding the missing links among metabolites, microbes, and the host. Immunity. 2014Jun;40(6):824–832. https://doi.org/10.1016/j.immuni.2014.05.015Search in Google Scholar
Ghosh A, Mehta A, Khan AM. Metagenomic analysis and its applications. In: Ranganathan S, Gribskov M, Nakai K, Schönbach C, editors. Encyclopedia of bioinformatics and computational biology. Oxford (UK): Academic Press; 2019. p. 184–193. https://doi.org/10.1016/B978-0-12-809633-8.20178-7GhoshAMehtaAKhanAM.Metagenomic analysis and its applications. In: RanganathanSGribskovMNakaiKSchönbachC, editors. Encyclopedia of bioinformatics and computational biology. Oxford (UK): Academic Press; 2019. p. 184–193. https://doi.org/10.1016/B978-0-12-809633-8.20178-7Search in Google Scholar
Kultima JR, Coelho LP, Forslund K, Huerta-Cepas J, Li SS, Driessen M, Voigt AY, Zeller G, Sunagawa S, Bork P. MOCAT2: A metagenomic assembly, annotation and profiling framework. Bioinformatics. 2016 Aug;32(16):2520–2523. https://doi.org/10.1093/bioinformatics/btw183KultimaJRCoelhoLPForslundKHuerta-CepasJLiSSDriessenMVoigtAYZellerGSunagawaSBorkP.MOCAT2: A metagenomic assembly, annotation and profiling framework. Bioinformatics. 2016Aug;32(16):2520–2523. https://doi.org/10.1093/bioinformatics/btw183Search in Google Scholar
Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: An ultrafast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015 May;31(10): 1674–1676. https://doi.org/10.1093/bioinformatics/btv033LiDLiuCMLuoRSadakaneKLamTW.MEGAHIT: An ultrafast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015May;31(10): 1674–1676. https://doi.org/10.1093/bioinformatics/btv033Search in Google Scholar
Li J, Chu R, Wang C, Li Y, Wu B, Wan J. Microbiome characteristics and Bifidobacterium longum in colorectal cancer patients pre- and post-chemotherapy. Transl Cancer Res. 2020 Apr;9(4):2178–2190. https://doi.org/10.21037/tcr.2020.03.33LiJChuRWangCLiYWuBWanJ.Microbiome characteristics and Bifidobacterium longum in colorectal cancer patients pre- and post-chemotherapy. Transl Cancer Res. 2020Apr;9(4):2178–2190. https://doi.org/10.21037/tcr.2020.03.33Search in Google Scholar
Liu J, Luo F, Wen L, Zhao Z, Sun H. Current understanding of microbiomes in cancer metastasis. Cancers. 2023 Mar;15(6):1893. https://doi.org/10.3390/cancers15061893LiuJLuoFWenLZhaoZSunH.Current understanding of microbiomes in cancer metastasis. Cancers. 2023Mar;15(6):1893. https://doi.org/10.3390/cancers15061893Search in Google Scholar
Mas-Lloret J, Obón-Santacana M, Ibáñez-Sanz G, Guinó E, Pato ML, Rodriguez-Moranta F, Mata A, García-Rodríguez A, Moreno V, Pimenoff VN. Gut microbiome diversity detected by high-coverage 16S and shotgun sequencing of paired stool and colon sample. Sci Data. 2020 Mar;7(1):92. https://doi.org/10.1038/s41597-020-0427-5Mas-LloretJObón-SantacanaMIbáñez-SanzGGuinóEPatoMLRodriguez-MorantaFMataAGarcía-RodríguezAMorenoVPimenoffVN.Gut microbiome diversity detected by high-coverage 16S and shotgun sequencing of paired stool and colon sample. Sci Data. 2020Mar;7(1):92. https://doi.org/10.1038/s41597-020-0427-5Search in Google Scholar
Moschen AR, Gerner RR, Wang J, Klepsch V, Adolph TE, Reider SJ, Hackl H, Pfister A, Schilling J, Moser PL, et al. Lipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations. Cell Host Microbe. 2016 Apr;19(4):455–469. https://doi.org/10.1016/j.chom.2016.03.007MoschenARGernerRRWangJKlepschVAdolphTEReiderSJHacklHPfisterASchillingJMoserPLLipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations. Cell Host Microbe. 2016Apr;19(4):455–469. https://doi.org/10.1016/j.chom.2016.03.007Search in Google Scholar
Olano C, Méndez C, Salas JA. Antitumor compounds from marine Actinomycetes. Mar Drugs. 2009 Jun;7(2):210–248. https://doi.org/10.3390/md7020210OlanoCMéndezCSalasJA.Antitumor compounds from marine Actinomycetes. Mar Drugs. 2009Jun;7(2):210–248. https://doi.org/10.3390/md7020210Search in Google Scholar
Prudence SMM, Addington E, Castaño-Espriu L, Mark DR, Pintor-Escobar L, Russell AH, McLean TC. Advances in actino-mycete research: An ActinoBase review of 2019. Microbiology. 2020 Aug; 166(8):683–694. https://doi.org/10.1099/mic.0.000944PrudenceSMMAddingtonECastaño-EspriuLMarkDRPintor-EscobarLRussellAHMcLeanTC.Advances in actino-mycete research: An ActinoBase review of 2019. Microbiology. 2020Aug; 166(8):683–694. https://doi.org/10.1099/mic.0.000944Search in Google Scholar
Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol. 2017 Sep;35(9):833–844. https://doi.org/10.1038/nbt.3935QuinceCWalkerAWSimpsonJTLomanNJSegataN.Shotgun metagenomics, from sampling to analysis. Nat Biotechnol. 2017Sep;35(9):833–844. https://doi.org/10.1038/nbt.3935Search in Google Scholar
R Core Team. A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; 2016 [cited 2024 Aug 15]. Available from https://www.r-project.orgR Core Team. A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; 2016 [cited 2024 Aug 15]. Available from https://www.r-project.orgSearch in Google Scholar
Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur J Nutr. 2018 Feb;57(1):1–24. https://doi.org/10.1007/s00394-017-1445-8RowlandIGibsonGHeinkenAScottKSwannJThieleITuohyK.Gut microbiota functions: Metabolism of nutrients and other food components. Eur J Nutr. 2018Feb;57(1):1–24. https://doi.org/10.1007/s00394-017-1445-8Search in Google Scholar
Sakamoto Y, Mima K, Ishimoto T, Ogata Y, Imai K, Miyamoto Y, Akiyama T, Daitoku N, Hiyoshi Y, Iwatsuki M, et al. Relationship between Fusobacterium nucleatum and antitumor immunity in colorectal cancer liver metastasis. Cancer Sci. 2021 Nov;112(11): 4470–4477. https://doi.org/10.1111/cas.15126SakamotoYMimaKIshimotoTOgataYImaiKMiyamotoYAkiyamaTDaitokuNHiyoshiYIwatsukiMRelationship between Fusobacterium nucleatum and antitumor immunity in colorectal cancer liver metastasis. Cancer Sci. 2021Nov;112(11): 4470–4477. https://doi.org/10.1111/cas.15126Search in Google Scholar
Sánchez-Alcoholado L, Ramos-Molina B, Otero A, Laborda-Illanes A, Ordóñez R, Medina JA, Gómez-Millán J, Queipo-Ortuño MI. The role of the gut microbiome in colorectal cancer development and therapy response. Cancers. 2020 May;12(6):1406. https://doi.org/10.3390/cancers12061406Sánchez-AlcoholadoLRamos-MolinaBOteroALaborda-IllanesAOrdóñezRMedinaJAGómez-MillánJQueipo-OrtuñoMI.The role of the gut microbiome in colorectal cancer development and therapy response. Cancers. 2020May;12(6):1406. https://doi.org/10.3390/cancers12061406Search in Google Scholar
Sharma S, Hashmi M, Valentino III D. Actinomycosis. [Internet, Updated 2023 Aug 7]. Treasure Island (USA): StatPearls Publishing; 2023 [cited 2024 Aug 15]. Available from https://www.ncbi.nlm.nih.gov/books/NBK482151SharmaSHashmiMValentinoD.IIIActinomycosis. [Internet, Updated 2023 Aug 7]. Treasure Island (USA): StatPearls Publishing; 2023 [cited 2024 Aug 15]. Available from https://www.ncbi.nlm.nih.gov/books/NBK482151Search in Google Scholar
Sobhani I, Bergsten E, Couffin S, Amiot A, Nebbad B, Barau C, de’Angelis N, Rabot S, Canoui-Poitrine F, Mestivier D, et al. Colorectal cancer-associated microbiota contributes to oncogenic epigenetic signatures. Proc Natl Acad Sci USA. 2019 Nov;116(48): 24285–24295. https://doi.org/10.1073/pnas.1912129116SobhaniIBergstenECouffinSAmiotANebbadBBarauCde’AngelisNRabotSCanoui-PoitrineFMestivierDColorectal cancer-associated microbiota contributes to oncogenic epigenetic signatures. Proc Natl Acad Sci USA. 2019Nov;116(48): 24285–24295. https://doi.org/10.1073/pnas.1912129116Search in Google Scholar
Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, Corthier G, Tran Van Nhieu J, Furet JP. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One. 2011 Jan; 6(1):e16393. https://doi.org/10.1371/journal.pone.0016393SobhaniITapJRoudot-ThoravalFRoperchJPLetulleSLangellaPCorthierGTran Van NhieuJFuretJP.Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One. 2011Jan; 6(1):e16393. https://doi.org/10.1371/journal.pone.0016393Search in Google Scholar
Song M, Chan AT. Environmental factors, gut microbiota, and colorectal cancer prevention. Clin Gastroenterol Hepatol. 2019 Jan; 17(2):275–289. https://doi.org/10.1016/j.cgh.2018.07.012SongMChanAT.Environmental factors, gut microbiota, and colorectal cancer prevention. Clin Gastroenterol Hepatol. 2019Jan; 17(2):275–289. https://doi.org/10.1016/j.cgh.2018.07.012Search in Google Scholar
Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015 Oct;12(10):902–903. https://doi.org/10.1038/nmeth.3589TruongDTFranzosaEATickleTLScholzMWeingartGPasolliETettAHuttenhowerCSegataN.MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015Oct;12(10):902–903. https://doi.org/10.1038/nmeth.3589Search in Google Scholar
Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, Torino F, Banna GL, Tonini G, Libra M. Gut microbiota and cancer: From pathogenesis to therapy. Cancers. 2019 Jan;11(1):38. https://doi.org/10.3390/cancers11010038VivarelliSSalemiRCandidoSFalzoneLSantagatiMStefaniSTorinoFBannaGLToniniGLibraM.Gut microbiota and cancer: From pathogenesis to therapy. Cancers. 2019Jan;11(1):38. https://doi.org/10.3390/cancers11010038Search in Google Scholar
Wong SH, Yu J. Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 2019 Nov;16(11):690–704. https://doi.org/10.1038/s41575-019-0209-8WongSHYuJ.Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 2019Nov;16(11):690–704. https://doi.org/10.1038/s41575-019-0209-8Search in Google Scholar
Wu SC, Rau CS, Liu HT, Kuo PJ, Chien PC, Hsieh TM, Tsai CH, Chuang JF, Huang CY, Hsieh HY, et al. Metagenome analysis as a tool to study bacterial infection associated with acute surgical abdomen. J Clin Med. 2018 Oct;7(10):346. https://doi.org/10.3390/jcm7100346WuSCRauCSLiuHTKuoPJChienPCHsiehTMTsaiCHChuangJFHuangCYHsiehHYMetagenome analysis as a tool to study bacterial infection associated with acute surgical abdomen. J Clin Med. 2018Oct;7(10):346. https://doi.org/10.3390/jcm7100346Search in Google Scholar
Xu H, Liu M, Cao J, Li X, Fan D, Xia Y, Lu X, Li J, Ju D, Zhao H. The dynamic interplay between the gut microbiota and autoimmune diseases. J Immunol Res. 2019 Oct;2019:7546047. https://doi.org/10.1155/2019/7546047XuHLiuMCaoJLiXFanDXiaYLuXLiJJuDZhaoH.The dynamic interplay between the gut microbiota and autoimmune diseases. J Immunol Res. 2019Oct;2019:7546047. https://doi.org/10.1155/2019/7546047Search in Google Scholar
Xu Z, Lv Z, Chen F, Zhang Y, Xu Z, Huo J, Liu W, Yu S, Tuersun A, Zhao J, et al. Dysbiosis of human tumor microbiome and aberrant residence of Actinomyces in tumor-associated fibroblasts in youngonset colorectal cancer. Front Immunol. 2022 Sep;13:1008975. https://doi.org/10.3389/fimmu.2022.1008975XuZLvZChenFZhangYXuZHuoJLiuWYuSTuersunAZhaoJDysbiosis of human tumor microbiome and aberrant residence of Actinomyces in tumor-associated fibroblasts in youngonset colorectal cancer. Front Immunol. 2022Sep;13:1008975. https://doi.org/10.3389/fimmu.2022.1008975Search in Google Scholar
Yoon H, Kim NE, Park J, Shin CM, Kim N, Lee DH, Park JY, Choi CH, Kim JG, Park YS. Analysis of the gut microbiome using extracellular vesicles in the urine of patients with colorectal cancer. Korean J Intern Med. 2023 Jan;38(1):27–38. https://doi.org/10.3904/kjim.2022.112YoonHKimNEParkJShinCMKimNLeeDHParkJYChoiCHKimJGParkYS.Analysis of the gut microbiome using extracellular vesicles in the urine of patients with colorectal cancer. Korean J Intern Med. 2023Jan;38(1):27–38. https://doi.org/10.3904/kjim.2022.112Search in Google Scholar
Yoon Y, Kim G, Jeon BN, Fang S, Park H. Bifidobacterium strainspecific enhances the efficacy of cancer therapeutics in tumor-bearing mice. Cancers. 2021 Feb;13(5):957. https://doi.org/10.3390/cancers13050957YoonYKimGJeonBNFangSParkH.Bifidobacterium strainspecific enhances the efficacy of cancer therapeutics in tumor-bearing mice. Cancers. 2021Feb;13(5):957. https://doi.org/10.3390/cancers13050957Search in Google Scholar
Zhang W, Rhodes JS, Garg A, Takemoto JY, Qi X, Harihar S, Tom Chang CW, Moon KR, Zhou A. Label-free discrimination and quantitative analysis of oxidative stress induced cytotoxicity and potential protection of antioxidants using Raman micro-spectroscopy and machine learning. Anal Chim Acta. 2020a Sep;1128:221–230. https://doi.org/10.1016/j.aca.2020.06.074ZhangWRhodesJSGargATakemotoJYQiXHariharSTom ChangCWMoonKRZhouA.Label-free discrimination and quantitative analysis of oxidative stress induced cytotoxicity and potential protection of antioxidants using Raman micro-spectroscopy and machine learning. Anal Chim Acta. 2020aSep;1128:221–230. https://doi.org/10.1016/j.aca.2020.06.074Search in Google Scholar
Zhang X, Chen BD, Zhao LD, Li H. The Gut microbiota: Emerging evidence in autoimmune diseases. Trends Mol Med. 2020b Sep; 26(9):862–873. https://doi.org/10.1016/j.molmed.2020.04.001ZhangXChenBDZhaoLDLiH.The Gut microbiota: Emerging evidence in autoimmune diseases. Trends Mol Med. 2020bSep; 26(9):862–873. https://doi.org/10.1016/j.molmed.2020.04.001Search in Google Scholar