Accès libre

Biofilm-Forming Ability and Effect of Sanitation Agents on Biofilm-Control of Thermophile Geobacillus sp. D413 and Geobacillus toebii E134

   | 23 nov. 2020
À propos de cet article

Citez

Algburi A, Comito N, Kashtanov D, Dicks LM, Chikindas ML. Control of biofilm formation: antibiotics and beyond. App Environ Microbiol. 2017 Feb; 83(3):e02508–16. https://doi.org/10.1128/AEM.02508-16AlgburiAComitoNKashtanovDDicksLMChikindasML. Control of biofilm formation: antibiotics and beyond. App Environ Microbiol.2017Feb; 83(3):e0250816. https://doi.org/10.1128/AEM.02508-1610.1128/AEM.02508-16Search in Google Scholar

Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol. 2006 Nov; 59(4):1114–1128. https://doi.org/10.1111/j.1365-2958.2005.05008.xAllesen-HolmMBarkenKBYangLKlausenMWebbJSKjellebergSMolinSGivskovMTolker-NielsenT. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol.2006Nov; 59(4):11141128. https://doi.org/10.1111/j.1365-2958.2005.05008.x10.1111/j.1365-2958.2005.05008.xSearch in Google Scholar

Angelopoulou A, Field D, Pérez-Ibarreche M, Warda AK, Hill C, Ross RP. Vancomycin and nisin A are effective against biofilms of multi-drug resistant Staphylococcus aureus isolates from human milk. Plos One. 2020 May; 15(5):e0233284. https://doi.org/10.1371/journal.pone.0233284AngelopoulouAFieldDPérez-IbarrecheMWardaAKHillCRossRP. Vancomycin and nisin A are effective against biofilms of multi-drug resistant Staphylococcus aureus isolates from human milk. Plos One.2020May; 15(5):e0233284. https://doi.org/10.1371/journal.pone.023328410.1371/journal.pone.0233284Search in Google Scholar

Boziaris IS, Adams MR. Effect of chelators and nisin produced in situ on inhibition and inactivation of Gram negatives. Int J Food Microbiol. 1999 Jul; 53(2–3):105–113. https://doi.org/10.1016/S0168-1605(99)00139-7BoziarisISAdamsMR. Effect of chelators and nisin produced in situ on inhibition and inactivation of Gram negatives. Int J Food Microbiol.1999Jul; 53(2–3):105113. https://doi.org/10.1016/S0168-1605(99)00139-710.1016/S0168-1605(99)00139-7Search in Google Scholar

Böckelmann U, Janke A, Kuhn R, Neu TR, Wecke J, Lawrence JR, Szewzyk U. Bacterial extracellular DNA forming a defined network-like structure. FEMS Microbiol Lett. 2006 Sep; 262(1):31–38. https://doi.org/10.1111/j.1574-6968.2006.00361.xBöckelmannUJankeAKuhnRNeuTRWeckeJLawrenceJRSzewzykU. Bacterial extracellular DNA forming a defined network-like structure. FEMS Microbiol Lett.2006Sep; 262(1):3138. https://doi.org/10.1111/j.1574-6968.2006.00361.x10.1111/j.1574-6968.2006.00361.x16907736Search in Google Scholar

Bremer P, Seale B, Flint S, Palmer J. Biofilms in dairy processing. In: Fratamico PM, Annous BA, Gunther NW IV, editors. Biofilms in the food and beverage industries. Sawston (UK): Woodhead Publishing. 2009; p. 396–431. https://doi.org/10.1533/9781845697167.4.396BremerPSealeBFlintSPalmerJ. Biofilms in dairy processing. In: FratamicoPMAnnousBAGuntherNWIV, editors. Biofilms in the food and beverage industries. Sawston (UK): Woodhead Publishing.2009; p. 396431. https://doi.org/10.1533/9781845697167.4.39610.1533/9781845697167.4.396Search in Google Scholar

Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: a review. Biofouling. 2011 Oct; 27(9):1017–1032. https://doi.org/10.1080/08927014.2011.626899BridierABriandetRThomasVDubois-BrissonnetF. Resistance of bacterial biofilms to disinfectants: a review. Biofouling.2011Oct; 27(9):10171032. https://doi.org/10.1080/08927014.2011.62689910.1080/08927014.2011.62689922011093Search in Google Scholar

Burgess SA, Brooks JD, Rakonjac J, Walker KM, Flint SH. The formation of spores in biofilms of Anoxybacillus flavithermus. J Appl Microbiol. 2009 Feb; 107(3):1012–1018. https://doi.org/10.1111/j.1365-2672.2009.04282.xBurgessSABrooksJDRakonjacJWalkerKMFlintSH. The formation of spores in biofilms of Anoxybacillus flavithermusJ Appl Microbiol.2009Feb; 107(3):10121018. https://doi.org/10.1111/j.1365-2672.2009.04282.x10.1111/j.1365-2672.2009.04282.x19320952Search in Google Scholar

Burgess SA, Flint SH, Lindsay D. Characterization of thermophilic bacilli from a milk powder processing plant. J Appl Microbiol. 2013 Oct; 116(2):350–359. https://doi.org/10.1111/jam.12366BurgessSAFlintSHLindsayD. Characterization of thermophilic bacilli from a milk powder processing plant.J Appl Microbiol.2013Oct; 116(2):350359. https://doi.org/10.1111/jam.1236610.1111/jam.1236624119100Search in Google Scholar

Cihan AC, Ozcan B, Tekin N, Cokmus C. Phylogenetic diversity of isolates belonging to genera Geobacillus and Aeribacillus isolated from different geothermal regions of Turkey. World J Microb Biot. 2011 Apr;27(11):2683. https://doi.org/10.1007/s11274-011-0742-2CihanACOzcanBTekinNCokmusC. Phylogenetic diversity of isolates belonging to genera Geobacillus and Aeribacillus isolated from different geothermal regions of Turkey. World J Microb Biot.2011Apr;27(11):2683. https://doi.org/10.1007/s11274-011-0742-210.1007/s11274-011-0742-2Search in Google Scholar

Cihan AC, Karaca B, Ozel BP, Kilic T. Determination of the biofilm production capacities and characteristics of members belonging to Bacillaceae family. World J Microb Biot. 2017 May;33(6):118. https://doi.org/10.1007/s11274-017-2271-0CihanACKaracaBOzelBPKilicT. Determination of the biofilm production capacities and characteristics of members belonging to Bacillaceae family. World J Microb Biot.2017May;33(6):118. https://doi.org/10.1007/s11274-017-2271-010.1007/s11274-017-2271-028493157Search in Google Scholar

Delves-Broughton J, Williams GC, Wilkinson S. The use of the bacteriocin, nisin, as a preservative in pasteurized liquid whole egg. Lett Appl Microbiol. 1992 Oct;15(4), 133–136. https://doi.org/10.1111/j.1472-765X.1992.tb00746.xDelves-BroughtonJWilliamsGCWilkinsonS. The use of the bacteriocin, nisin, as a preservative in pasteurized liquid whole egg. Lett Appl Microbiol.1992Oct;15(4), 133136. https://doi.org/10.1111/j.1472-765X.1992.tb00746.x10.1111/j.1472-765X.1992.tb00746.x29389026Search in Google Scholar

Dengler V, Foulston L, DeFrancesco AS, Losick R. An electrostatic net model for the role of extracellular DNA in biofilm formation by Staphylococcus aureus. J Bacteriol. 2015 Sep;197(24):3779–3787. https://doi.org/10.1128/JB.00726-15DenglerVFoulstonLDeFrancescoASLosickR. An electrostatic net model for the role of extracellular DNA in biofilm formation by Staphylococcus aureusJ Bacteriol.2015Sep;197(24):37793787. https://doi.org/10.1128/JB.00726-1510.1128/JB.00726-15465205526416831Search in Google Scholar

Eijlander RT, van Hekezen R, Bienvenue A, Girard V, Hoornstra E, Johnson NB, Meyer R, Wagendorp A, Walker DC, Wells-Bennik MHJ. Spores in dairy-new insights in detection, enumeration and risk assessment. Int J Dairy Technol. 2019 May;72(2):303–315. https://doi.org/10.1111/1471-0307.12586EijlanderRTvan HekezenRBienvenueAGirardVHoornstraEJohnsonNBMeyerRWagendorpAWalkerDCWells-BennikMHJ. Spores in dairy-new insights in detection, enumeration and risk assessment. Int J Dairy Technol.2019May;72(2):303315. https://doi.org/10.1111/1471-0307.1258610.1111/1471-0307.12586Search in Google Scholar

Elhariry H, Gherbawy Y, El-Deeb B, Altalhi A. Molecular identification and biofilm-forming ability of culturable aquatic bacteria in microbial biofilms formed in drinking water distribution networks. Geomicrobiol J. 2012 May;29(6):561–569. https://doi.org/10.1080/01490451.2011.596254ElhariryHGherbawyYEl-DeebBAltalhiA. Molecular identification and biofilm-forming ability of culturable aquatic bacteria in microbial biofilms formed in drinking water distribution networks. Geomicrobiol J.2012May;29(6):561569. https://doi.org/10.1080/01490451.2011.59625410.1080/01490451.2011.596254Search in Google Scholar

Fleming D, Chahin L, Rumbaugh K. Glycoside hydrolases degrade polymicrobial bacterial biofilms in wounds. Antimicrob Agents Ch. 2017 Nov; 61(2):e01998-16. https://doi.org/10.1128/AAC.01998-16FlemingDChahinLRumbaughK. Glycoside hydrolases degrade polymicrobial bacterial biofilms in wounds. Antimicrob Agents Ch.2017Nov; 61(2):e01998-16. https://doi.org/10.1128/AAC.01998-1610.1128/AAC.01998-16527873927872074Search in Google Scholar

Garrett TR, Bhakoo M, Zhang Z. Bacterial adhesion and biofilms on surfaces. Prog Nat Sci. 2008 Sep;18(9):1049–1056. https://doi.org/10.1016/j.pnsc.2008.04.001GarrettTRBhakooMZhangZ. Bacterial adhesion and biofilms on surfaces. Prog Nat Sci.2008Sep;18(9):10491056. https://doi.org/10.1016/j.pnsc.2008.04.00110.1016/j.pnsc.2008.04.001Search in Google Scholar

Giaouris ED, Nychas GJE. The adherence of Salmonella Enteritidis PT4 to stainless steel: The importance of the air-liquid interface and nutrient availability. Food Microbiol. 2006 Apr;23:747–752. https://doi.org/10.1016/j.fm.2006.02.006GiaourisEDNychasGJE. The adherence of Salmonella Enteritidis PT4 to stainless steel: The importance of the air-liquid interface and nutrient availability. Food Microbiol.2006Apr;23:747752. https://doi.org/10.1016/j.fm.2006.02.00610.1016/j.fm.2006.02.00616943077Search in Google Scholar

Gopal N, Hill C, Ross PR, Beresford TP, Fenelon MA, Cotter PD. The prevalence and control of Bacillus and related spore-forming bacteria in the dairy industry. Front Microbiol. 2015 Dec;6:1418. https://doi.org/10.3389/fmicb.2015.01418GopalNHillCRossPRBeresfordTPFenelonMACotterPD. The prevalence and control of Bacillus and related spore-forming bacteria in the dairy industry. Front Microbiol.2015Dec;6:1418. https://doi.org/10.3389/fmicb.2015.0141810.3389/fmicb.2015.01418468514026733963Search in Google Scholar

González-Rivas F, Ripolles-Avila C, Fontecha-Umaña F, Ríos-Castillo AG, Rodríguez-Jerez JJ. Biofilms in the spotlight: Detection, quantification, and removal methods. Compr Rev Food Sci Food Saf. 2018 Jun;17(5):1261–1276. https://doi.org/10.1111/1541-4337.12378González-RivasFRipolles-AvilaCFontecha-UmañaFRíos-CastilloAGRodríguez-JerezJJ. Biofilms in the spotlight: Detection, quantification, and removal methods. Compr Rev Food Sci Food Saf.2018Jun;17(5):12611276. https://doi.org/10.1111/1541-4337.1237810.1111/1541-4337.1237833350156Search in Google Scholar

Grande R, Di Giulio M, Bessa LJ, Di Campli E, Baffoni M, Guarnieri S, Cellini L. Extracellular DNA in Helicobacter pylori biofilm: a backstairs rumour. J Appl Microbiol. 2010 Nov;110:490–498. https://doi.org/10.1111/j.1365-2672.2010.04911.xGrandeRDi GiulioMBessaLJDi CampliEBaffoniMGuarnieriSCelliniL. Extracellular DNA in Helicobacter pylori biofilm: a backstairs rumour.J Appl Microbiol.2010Nov;110:490498. https://doi.org/10.1111/j.1365-2672.2010.04911.x10.1111/j.1365-2672.2010.04911.xSearch in Google Scholar

Gupta S, Anand S. Induction of pitting corrosion on stainless steel (grades 304 and 316) used in dairy industry by biofilms of common sporeformers. Int J Dairy Technol. 2018 May;71(2):519–531. https://doi.org/10.1111/1471-0307.12444GuptaSAnandS. Induction of pitting corrosion on stainless steel (grades 304 and 316) used in dairy industry by biofilms of common sporeformers. Int J Dairy Technol.2018May;71(2):519531. https://doi.org/10.1111/1471-0307.1244410.1111/1471-0307.12444Search in Google Scholar

Herigstad B, Hamilton M, Heersink J. How to optimize the drop plate method for enumerating bacteria. J Microbiol Meth. 2001 Mar;44:121–129. https://doi.org/10.1016/s0167-7012(00)00241-4HerigstadBHamiltonMHeersinkJ. How to optimize the drop plate method for enumerating bacteria.J Microbiol Meth.2001Mar;44:121129. https://doi.org/10.1016/s0167-7012(00)00241-410.1016/S0167-7012(00)00241-4Search in Google Scholar

Ibáñez de Aldecoa AL, Zafra O, González-Pastor JE. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities. Front Microbiol. 2017 Jul;8:1390. https://doi.org/10.3389/fmicb.2017.01390Ibáñez de AldecoaALZafraOGonzález-PastorJE. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities. Front Microbiol.2017Jul;8:1390. https://doi.org/10.3389/fmicb.2017.0139010.3389/fmicb.2017.01390552715928798731Search in Google Scholar

Izano EA, Amarante MA, Kher WB, Kaplan JB. Differential roles of poly-N acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol. 2008 Jan;74(2):470–476. https://doi.org/10.1128/AEM.02073-07IzanoEAAmaranteMAKherWBKaplanJB. Differential roles of poly-N acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol.2008Jan;74(2):470476. https://doi.org/10.1128/AEM.02073-0710.1128/AEM.02073-07222326918039822Search in Google Scholar

Jindal S, Anand S, Huang K, Goddard J, Metzger L, Amamcharla J. Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk sporeformers. J Dairy Sci. 2016 Sep;99(12):9502–9513. https://doi.org/10.3168/jds.2016-11395JindalSAnandSHuangKGoddardJMetzgerLAmamcharlaJ. Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk sporeformers.J Dairy Sci.2016Sep;99(12):95029513. https://doi.org/10.3168/jds.2016-1139510.3168/jds.2016-1139527692715Search in Google Scholar

Karaca B, Buzrul S, Coleri Cihan A. Anoxybacillus and Geobacillus biofilms in the dairy industry: effects of surface material, incubation temperature and milk type. Biofouling. 2019 Jul;35(5):551–560. https://doi.org/10.1080/08927014.2019.1628221KaracaBBuzrulSColeri CihanA. Anoxybacillus and Geobacillus biofilms in the dairy industry: effects of surface material, incubation temperature and milk type. Biofouling.2019Jul;35(5):551560. https://doi.org/10.1080/08927014.2019.162822110.1080/08927014.2019.162822131273998Search in Google Scholar

Lequette Y, Boels G, Clarisse M, Faille C. Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry. Biofouling. 2010 May; 26(4): 421–431. https://doi.org/10.1080/08927011003699535LequetteYBoelsGClarisseMFailleC. Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry. Biofouling.2010May; 26(4): 421431. https://doi.org/10.1080/0892701100369953510.1080/0892701100369953520198521Search in Google Scholar

Lindsay D, Flint S. Biofilm formation by spore-forming bacteria in food processing environments. In: Fratamico PM, Annous BA, Gunther IV NW, editors. Biofilms in the food and beverage industries. Sawston (UK): Woodhead Publishing. 2009; p. 270–299. https://doi.org/10.1533/9781845697167.2.270LindsayDFlintS. Biofilm formation by spore-forming bacteria in food processing environments. In: FratamicoPMAnnousBAGunther IVNW, editors. Biofilms in the food and beverage industries. Sawston (UK): Woodhead Publishing.2009; p. 270299. https://doi.org/10.1533/9781845697167.2.27010.1533/9781845697167.2.270Search in Google Scholar

Mandic-Mulec I, Stefanic P, van Elsas JD. Ecology of Bacillaceae. Microbiol Spect. 2015 Mar;3(2):1–24. https://doi.org/10.1128/microbiolspec.TBS-0017-2013Mandic-MulecIStefanicPvan ElsasJD. Ecology of Bacillaceae. Microbiol Spect.2015Mar;3(2):124. https://doi.org/10.1128/microbiolspec.TBS-0017-201310.1128/microbiolspec.TBS-0017-201326104706Search in Google Scholar

Mazaheri T, Ripolles-Avila C, Hascoët AS, Rodríguez-Jerez JJ. Effect of an enzymatic treatment on the removal of mature Listeria monocytogenes biofilms: A quantitative and qualitative study. Food Control, 2020 Mar;107266. https://doi.org/10.1016/j.foodcont.2020.107266MazaheriTRipolles-AvilaCHascoëtASRodríguez-JerezJJ. Effect of an enzymatic treatment on the removal of mature Listeria monocytogenes biofilms: A quantitative and qualitative study.Food Control, 2020Mar;107266. https://doi.org/10.1016/j.foodcont.2020.10726610.1016/j.foodcont.2020.107266Search in Google Scholar

Meireles A, Borges A, Giaouris E, Simões M. The current knowledge on the application of anti-biofilm enzymes in the food industry. Food Res Int. 2016 Jun; 86:140–146. https://doi.org/10.1016/j.foodres.2016.06.006MeirelesABorgesAGiaourisESimõesM. The current knowledge on the application of anti-biofilm enzymes in the food industry. Food Res Int.2016Jun; 86:140146. https://doi.org/10.1016/j.foodres.2016.06.00610.1016/j.foodres.2016.06.006Search in Google Scholar

Nguyen UT, Burrows LL. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms. Int J Food Microbiol. 2014 Jul;187:26–32. https://doi.org/10.1016/j.ijfoodmicro.2014.06.025NguyenUTBurrowsLL. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms. Int J Food Microbiol.2014Jul;187:2632. https://doi.org/10.1016/j.ijfoodmicro.2014.06.02510.1016/j.ijfoodmicro.2014.06.025Search in Google Scholar

Parkar SG, Flint SH, Brooks JD. Physiology of biofilms of thermophilic bacilli – potential consequences for cleaning. J Ind Microbiol Biot. 2003 Aug;30: 553–560. https://doi.org/10.1007/s10295-003-0081-xParkarSGFlintSHBrooksJD. Physiology of biofilms of thermophilic bacilli – potential consequences for cleaning.J Ind Microbiol Biot.2003Aug;30: 553560. https://doi.org/10.1007/s10295-003-0081-x10.1007/s10295-003-0081-xSearch in Google Scholar

Parkar SG, Flint SH., Brooks JD. Evaluation of the effect of cleaning regimes on biofilms of thermophilic bacilli on stainless steel. J Appl Microbiol. 2004 Nov; 96:110–116. https://doi.org/10.1046/j.1365-2672.2003.02136.xParkarSGFlintSH.BrooksJD. Evaluation of the effect of cleaning regimes on biofilms of thermophilic bacilli on stainless steel.J Appl Microbiol.2004Nov; 96:110116. https://doi.org/10.1046/j.1365-2672.2003.02136.x10.1046/j.1365-2672.2003.02136.xSearch in Google Scholar

Peng N, Cai P, Mortimer M, Wu Y, Gao C, Huang Q. The exopolysaccharide-eDNA interaction modulates 3D architecture of Bacillus subtilis biofilm. BMC Microbiol. 2020 May;20:1–12. https://doi.org/10.1186/s12866-020-01789-5PengNCaiPMortimerMWuYGaoCHuangQ. The exopolysaccharide-eDNA interaction modulates 3D architecture of Bacillus subtilis biofilm. BMC Microbiol.2020May;20:112. https://doi.org/10.1186/s12866-020-01789-510.1186/s12866-020-01789-5Search in Google Scholar

Pitts B, Hamilton MA, Zelver N, Stewart PS. A microtiter-plate screening method for biofilm disinfection and removal. J Microbiol Meth. 2003 Aug; 54:269–276. https://doi.org/10.1016/S0167-7012(03)00034-4PittsBHamiltonMAZelverNStewartPS. A microtiter-plate screening method for biofilm disinfection and removal.J Microbiol Meth.2003Aug; 54:269276. https://doi.org/10.1016/S0167-7012(03)00034-410.1016/S0167-7012(03)00034-4Search in Google Scholar

Ponnusamy K, Paul D, Kim YS, Kweon JH. 2(5H)-Furanone: a prospective strategy for biofouling-control in membrane biofilm bacteria by quorum sensing inhibition. Braz J Microbiol. 2010 Mar;41:227–234. https://doi.org/10.1590/S1517-83822010000100032PonnusamyKPaulDKimYSKweonJH. 2(5H)-Furanone: a prospective strategy for biofouling-control in membrane biofilm bacteria by quorum sensing inhibition. Braz J Microbiol.2010Mar;41:227234. https://doi.org/10.1590/S1517-8382201000010003210.1590/S1517-83822010000100032Search in Google Scholar

Ramirez T, Shrestha A, Kishen A. Inflammatory potential of monospecies biofilm matrix components. In Endod J 2019 Feb;52(7): 1020–1027. https://doi.org/10.1111/iej.13093RamirezTShresthaAKishenA. Inflammatory potential of monospecies biofilm matrix components. In Endod J2019Feb;52(7): 10201027. https://doi.org/10.1111/iej.1309310.1111/iej.1309330719720Search in Google Scholar

Rojo-Bezares B, Sáenz Y, Zarazaga M, Torres C, Ruiz-Larrea F. Antimicrobial activity of nisin against Oenococcus oeni and other wine bacteria. Int. J Food Microbiol. 2007 May;116(1):32–36. https://doi.org/10.1016/j.ijfoodmicro.2006.12.020Rojo-BezaresBSáenzYZarazagaMTorresCRuiz-LarreaF. Antimicrobial activity of nisin against Oenococcus oeni and other wine bacteria. Int.J Food Microbiol.2007May;116(1):3236. https://doi.org/10.1016/j.ijfoodmicro.2006.12.02010.1016/j.ijfoodmicro.2006.12.02017320991Search in Google Scholar

Rumbaugh KP, Sauer K. Biofilm dispersion. Nat Rev Microbiol. 2020 Jun;18:571–586. https://doi.org/10.1038/s41579-020-0385-0RumbaughKPSauerK. Biofilm dispersion. Nat Rev Microbiol.2020Jun;18:571586. https://doi.org/10.1038/s41579-020-0385-010.1038/s41579-020-0385-0Search in Google Scholar

Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, Molin S, Qu D. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology. 2007 Jul;153(7):2083–2092. https://doi.org/10.1099/mic.0.2007/006031-0QinZOuYYangLZhuYTolker-NielsenTMolinSQuD. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology.2007Jul;153(7):20832092. https://doi.org/10.1099/mic.0.2007/006031-010.1099/mic.0.2007/006031-0Search in Google Scholar

Ripolles-Avila C, Ríos-Castillo AG, Fontecha-Umaña F, Rodríguez-Jerez JJ. Removal of Salmonella enterica serovar Typhimurium and Cronobacter sakazakii biofilms from food contact surfaces through enzymatic catalysis. J Food Safety. 2019 Dec;40(2):e12755. https://doi.org/10.1111/jfs.12755Ripolles-AvilaCRíos-CastilloAGFontecha-UmañaFRodríguez-JerezJJ. Removal of Salmonella enterica serovar Typhimurium and Cronobacter sakazakii biofilms from food contact surfaces through enzymatic catalysis.J Food Safety.2019Dec;40(2):e12755. https://doi.org/10.1111/jfs.1275510.1111/jfs.12755Search in Google Scholar

Ripolles-Avila C, Ramos-Rubio M, Hascoët AS, Castillo M, Rodríguez-Jerez JJ. New approach for the removal of mature biofilms formed by wild strains of Listeria monocytogenes isolated from food contact surfaces in an Iberian pig processing plant. Int J Food Microbiol. 2020 Mar;108595. https://doi.org/10.1016/j.ijfoodmicro.2020.108595Ripolles-AvilaCRamos-RubioMHascoëtASCastilloMRodríguez-JerezJJ. New approach for the removal of mature biofilms formed by wild strains of Listeria monocytogenes isolated from food contact surfaces in an Iberian pig processing plant.Int J Food Microbiol.2020Mar;108595. https://doi.org/10.1016/j.ijfoodmicro.2020.10859510.1016/j.ijfoodmicro.2020.108595Search in Google Scholar

Scott SA, Brooks JD, Rakonjac J, Walker KM, Flint SH. The formation of thermophilic spores during the manufacture of whole milk powder. Int J Dairy Technol. 2007 May;60(2):109–117. https://doi.org/10.1111/j.1471-0307.2007.00309.xScottSABrooksJDRakonjacJWalkerKMFlintSH. The formation of thermophilic spores during the manufacture of whole milk powder. Int J Dairy Technol.2007May;60(2):109117. https://doi.org/10.1111/j.1471-0307.2007.00309.x10.1111/j.1471-0307.2007.00309.xSearch in Google Scholar

Shemesh M, Ostrov I. Role of Bacillus species in biofilm persistence and emerging antibiofilm strategies in the dairy industry. J Sci Food Agric. 2020 Jan; 100(6):2327–2336. https://doi.org/10.1002/jsfa.10285ShemeshMOstrovI. Role of Bacillus species in biofilm persistence and emerging antibiofilm strategies in the dairy industry.J Sci Food Agric.2020Jan; 100(6):23272336. https://doi.org/10.1002/jsfa.1028510.1002/jsfa.10285Search in Google Scholar

Soler-Arango J, Figoli C, Muraca G, Bosch A, Brelles-Mariño G. The Pseudomonas aeruginosa biofilm matrix and cells are drastically impacted by gas discharge plasma treatment: A comprehensive model explaining plasma-mediated biofilm eradication. PloS One. 2019 Jun;14(6):e0216817. https://doi.org/10.1371/journal.pone.0216817Soler-ArangoJFigoliCMuracaGBoschABrelles-MariñoG. The Pseudomonas aeruginosa biofilm matrix and cells are drastically impacted by gas discharge plasma treatment: A comprehensive model explaining plasma-mediated biofilm eradication. PloS One.2019Jun;14(6):e0216817. https://doi.org/10.1371/journal.pone.021681710.1371/journal.pone.0216817Search in Google Scholar

Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Meth. 2000 Apr;40:175–179. https://doi.org/10.1016/s0167-7012(00)00122-6StepanovićSVukovićDDakićISavićBŠvabić-VlahovićM. A modified microtiter-plate test for quantification of staphylococcal biofilm formation.J Microbiol Meth.2000Apr;40:175179. https://doi.org/10.1016/s0167-7012(00)00122-610.1016/S0167-7012(00)00122-6Search in Google Scholar

Sung MH, Kim H, Bae JW, Rhee SK, Jeon CO, Kim K, Kim JJ, Hong SP, Lee SG, Yoon JH, Park YH, Baek DH. Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. Int J Syst Evol Micr. 2002 Jun;52(6):2251–2255. https://doi.org/10.1099/00207713-52-6-2251SungMHKimHBaeJWRheeSKJeonCOKimKKimJJHongSPLeeSGYoonJHParkYHBaekDH. Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. Int J Syst Evol Micr.2002Jun;52(6):22512255. https://doi.org/10.1099/00207713-52-6-225110.1099/00207713-52-6-225112508894Search in Google Scholar

Tabak M, Scher K, Hartog E, Romling U, Matthews KR, Chikindas ML, Yaron S. Effect of triclosan on Salmonella typhimurium at different growth stages and in biofilms. FEMS Microbiol Lett. 2007 Dec;267:200–206. https://doi.org/10.1111/j.1574-6968.2006.00547.xTabakMScherKHartogERomlingUMatthewsKRChikindasMLYaronS. Effect of triclosan on Salmonella typhimurium at different growth stages and in biofilms. FEMS Microbiol Lett.2007Dec;267:200206. https://doi.org/10.1111/j.1574-6968.2006.00547.x10.1111/j.1574-6968.2006.00547.x17156099Search in Google Scholar

Wells-Bennik MH, Janssen PW, Klaus V, Yang C, Zwietering MH, Den Besten HM. Heat resistance of spores of 18 strains of Geobacillus stearothermophilus and impact of culturing conditions. Int J Food Microbiol. 2019 Nov;291:161–172. https://doi.org/10.1016/j.ijfoodmicro.2018.11.005Wells-BennikMHJanssenPWKlausVYangCZwieteringMHDen BestenHM. Heat resistance of spores of 18 strains of Geobacillus stearothermophilus and impact of culturing conditions. Int J Food Microbiol.2019Nov;291:161172. https://doi.org/10.1016/j.ijfoodmicro.2018.11.00510.1016/j.ijfoodmicro.2018.11.00530504002Search in Google Scholar

Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol. 2001 Nov;56:2–4. https://doi.org/10.1002/0471142727.mb0204s56WilsonK. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol.2001Nov;56:24. https://doi.org/10.1002/0471142727.mb0204s5610.1002/0471142727.mb0204s5618265184Search in Google Scholar

Woodward MJ, Sojka M, Sprigings KA, Humphrey TJ. The role of SEF14 and SEF17 fimbriae in the adherence of Salmonella enterica serotype Enteritidis to inanimate surfaces. J Med Microbiol. 2000 May;49:481–487. https://doi.org/10.1099/0022-1317-49-5-48WoodwardMJSojkaMSprigingsKAHumphreyTJ. The role of SEF14 and SEF17 fimbriae in the adherence of Salmonella enterica serotype Enteritidis to inanimate surfaces.J Med Microbiol.2000May;49:481487. https://doi.org/10.1099/0022-1317-49-5-4810.1099/0022-1317-49-5-48110798562Search in Google Scholar

eISSN:
2544-4646
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Microbiology and Virology