À propos de cet article

Citez

Abou-Shanab RAI, van Berkum P, Angle JS. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere. 2007 Jun;68(2):360–367. https://doi.org/10.1016/j.chemosphere.2006.12.051Abou-ShanabRAIvan BerkumPAngleJS.Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere.2007Jun;68(2):360367. https://doi.org/10.1016/j.chemosphere.2006.12.05110.1016/j.chemosphere.2006.12.05117276484Search in Google Scholar

Akter M, Sikder MT, Rahman MM, Ullah AKMA, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M. A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res. 2018 Jan;9:1–16. https://doi.org/10.1016/j.jare.2017.10.008AkterMSikderMTRahmanMMUllahAKMAHossainKFBBanikSHosokawaTSaitoTKurasakiM.A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res.2018Jan;9:116. https://doi.org/10.1016/j.jare.2017.10.00810.1016/j.jare.2017.10.008605723830046482Search in Google Scholar

Anil Kumar S, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett. 2007 Feb 16;29(3):439–445. https://doi.org/10.1007/s10529-006-9256-7Anil KumarSAbyanehMKGosaviSWKulkarniSKPasrichaRAhmadAKhanMI.Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett.2007Feb 16;29(3):439445. https://doi.org/10.1007/s10529-006-9256-710.1007/s10529-006-9256-717237973Search in Google Scholar

AshaRani PV. Hande MP, Valiyaveettil S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol. 2009;10:Article 65. https://doi.org/10.1186/1471-2121-10-65AshaRaniPV.HandeMPValiyaveettilS.Anti-proliferative activity of silver nanoparticles. BMC Cell Biol.2009;10:Article 65. https://doi.org/10.1186/1471-2121-10-6510.1186/1471-2121-10-65275991819761582Search in Google Scholar

Bargheer D, Nielsen J, Gébel G, Heine M, Salmen SC, Stauber R, Weller H, Heeren J, Nielsen P. The fate of a designed protein corona on nanoparticles in vitro and in vivo. Beilstein J Nanotechnol. 2015 Jan 06;6:36–46. https://doi.org/10.3762/bjnano.6.5BargheerDNielsenJGébelGHeineMSalmenSCStauberRWellerHHeerenJNielsenP.The fate of a designed protein corona on nanoparticles in vitro and in vivo. Beilstein J Nanotechnol.2015Jan 06;6:3646. https://doi.org/10.3762/bjnano.6.510.3762/bjnano.6.5431173225671150Search in Google Scholar

Bartłomiejczyk T, Lankoff A, Kruszewski M, Szumiel I. Silver nanoparticles – allies or adversaries? Ann Agric Environ Med. 2013; 20(1):48–54.BartłomiejczykTLankoffAKruszewskiMSzumielI.Silver nanoparticles – allies or adversaries?Ann Agric Environ Med.2013; 20(1):4854.Search in Google Scholar

Bundschuh M, Seitz F, Rosenfeldt RR, Schulz R. Effects of nanoparticles in fresh waters: risks, mechanisms and interactions. Freshw Biol. 2016 Dec;61(12):2185–2196. https://doi.org/10.1111/fwb.12701BundschuhMSeitzFRosenfeldtRRSchulzR.Effects of nanoparticles in fresh waters: risks, mechanisms and interactions. Freshw Biol.2016Dec;61(12):21852196. https://doi.org/10.1111/fwb.1270110.1111/fwb.12701Search in Google Scholar

Chong TM, Yin WF, Mondy S, Grandclément C, Dessaux Y, Chan KG. Heavy-metal resistance of a France vineyard soil bacterium, Pseudomonas mendocina strain S5.2, revealed by whole-genome sequencing. J Bacteriol. 2012 Nov 15;194(22):6366. https://doi.org/10.1128/JB.01702-12ChongTMYinWFMondySGrandclémentCDessauxYChanKG.Heavy-metal resistance of a France vineyard soil bacterium, Pseudomonas mendocina strain S5.2, revealed by whole-genome sequencing. J Bacteriol.2012Nov 15;194(22):6366. https://doi.org/10.1128/JB.01702-1210.1128/JB.01702-12348634723105092Search in Google Scholar

Dar MA, Ingle A, Rai M. Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine. 2013 Jan;9(1):105–110. https://doi.org/10.1016/j.nano.2012.04.007DarMAIngleARaiM.Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine.2013Jan;9(1):105110. https://doi.org/10.1016/j.nano.2012.04.00710.1016/j.nano.2012.04.00722633901Search in Google Scholar

del Pino P, Pelaz B, Zhang Q, Maffre P, Nienhaus GU, Parak WJ. Protein corona formation around nanoparticles – from the past to the future. Mater Horiz. 2014;1(3):301–313. https://doi.org/10.1039/C3MH00106Gdel PinoPPelazBZhangQMaffrePNienhausGUParakWJ.Protein corona formation around nanoparticles – from the past to the future. Mater Horiz.2014;1(3):301313. https://doi.org/10.1039/C3MH00106G10.1039/C3MH00106GSearch in Google Scholar

Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine. 2016 Apr;12(3):789–799. https://doi.org/10.1016/j.nano.2015.11.016DuránNDuránMde JesusMBSeabraABFávaroWJNakazatoG.Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine.2016Apr;12(3):789799. https://doi.org/10.1016/j.nano.2015.11.01610.1016/j.nano.2015.11.01626724539Search in Google Scholar

Echegoyen Y, Nerín C. Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol. 2013 Dec;62:16–22. https://doi.org/10.1016/j.fct.2013.08.014EchegoyenYNerínC.Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol.2013Dec;62:1622. https://doi.org/10.1016/j.fct.2013.08.01410.1016/j.fct.2013.08.01423954768Search in Google Scholar

EPA. Secondary drinking water standards: guidance for nuisance chemicals [Internet]. Washington, DC (USA): United States Environ mental Protection Agency; 2017 Mar 8 [cited 2019 May 15]. Available from https://www.epa.gov/dwstandardsregulations/secondary-drinking-water-standards-guidance-nuisance-chemicalsEPA.Secondary drinking water standards: guidance for nuisance chemicals [Internet]. Washington, DC (USA): United States Environ mental Protection Agency; 2017Mar 8 [cited 2019 May 15]. Available from https://www.epa.gov/dwstandardsregulations/secondary-drinking-water-standards-guidance-nuisance-chemicalsSearch in Google Scholar

Flores-López LZ, Espinoza-Gómez H, Somanathan R. Silver nano particles: electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. J Appl Toxicol. 2019 Jan;39(1):16–26. https://doi.org/10.1002/jat.3654Flores-LópezLZEspinoza-GómezHSomanathanR.Silver nano particles: electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. J Appl Toxicol.2019Jan;39(1):1626. https://doi.org/10.1002/jat.365410.1002/jat.365429943411Search in Google Scholar

Galván Márquez I, Ghiyasvand M, Massarsky A, Babu M, Samanfar B, Omidi K, Moon TW, Smith ML, Golshani A. Zinc oxide and silver nanoparticles toxicity in the baker’s yeast, Saccharomyces cerevisiae. PLoS One. 2018 Mar 19;13(3):e0193111. https://doi.org/10.1371/journal.pone.0193111Galván MárquezIGhiyasvandMMassarskyABabuMSamanfarBOmidiKMoonTWSmithMLGolshaniA.Zinc oxide and silver nanoparticles toxicity in the baker’s yeast, Saccharomyces cerevisiae. PLoS One.2018Mar 19;13(3):e0193111. https://doi.org/10.1371/journal.pone.019311110.1371/journal.pone.0193111585874929554091Search in Google Scholar

Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine. 2012 Jan;8(1):37–45. https://doi.org/10.1016/j.nano.2011.05.007GuzmanMDilleJGodetS.Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine.2012Jan;8(1):3745. https://doi.org/10.1016/j.nano.2011.05.00710.1016/j.nano.2011.05.00721703988Search in Google Scholar

Jo YK, Kim BH, Jung G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis. 2009 Oct;93(10):1037–1043. https://doi.org/10.1094/PDIS-93-10-1037JoYKKimBHJungG.Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis.2009Oct;93(10):10371043. https://doi.org/10.1094/PDIS-93-10-103710.1094/PDIS-93-10-103730754381Search in Google Scholar

Kaiser JP, Roesslein M, Diener L, Wichser A, Nowack B, Wick P. Cytotoxic effects of nanosilver are highly dependent on the chloride concentration and the presence of organic compounds in the cell culture media. J Nanobiotechnology. 2017 Dec;15(1):5. https://doi.org/10.1186/s12951-016-0244-3KaiserJPRoessleinMDienerLWichserANowackBWickP.Cytotoxic effects of nanosilver are highly dependent on the chloride concentration and the presence of organic compounds in the cell culture media. J Nanobiotechnology.2017Dec;15(1):5. https://doi.org/10.1186/s12951-016-0244-310.1186/s12951-016-0244-3521968828061858Search in Google Scholar

Kanawaria SK, Sankhla A, Jatav PK, Yadav RS, Verma KS, Velraj P, Kachhwaha S, Kothari SL. Rapid biosynthesis and charac terization of silver nanoparticles: an assessment of antibacterial and antimycotic activity. Appl Phys, A Mater Sci Process. 2018 Apr; 124(4): 320. https://doi.org/10.1007/s00339-018-1701-7KanawariaSKSankhlaAJatavPKYadavRSVermaKSVelrajPKachhwahaSKothariSL.Rapid biosynthesis and charac terization of silver nanoparticles: an assessment of antibacterial and antimycotic activity. Appl Phys, A Mater Sci Process.2018Apr; 124(4): 320. https://doi.org/10.1007/s00339-018-1701-710.1007/s00339-018-1701-7Search in Google Scholar

Kędziora A, Krzyżewska E, Dudek B, Bugla-Płoskońska G. [The participation of outer membranes proteins in the bacterial sen si tivity to nanosilver]. Postepy Hig Med Dosw. 2016;70:610–617. https://doi.org/10.5604/17322693.1205005KędzioraAKrzyżewskaEDudekBBugla-PłoskońskaG.[The participation of outer membranes proteins in the bacterial sen si tivity to nanosilver]. Postepy Hig Med Dosw.2016;70:610617. https://doi.org/10.5604/17322693.120500510.5604/17322693.120500527333931Search in Google Scholar

Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007 Mar;3(1):95–101. https://doi.org/10.1016/j.nano.2006.12.001KimJSKukEYuKNKimJHParkSJLeeHJKimSHParkYKParkYHHwangCY, Antimicrobial effects of silver nanoparticles. Nanomedicine.2007Mar;3(1):95101. https://doi.org/10.1016/j.nano.2006.12.00110.1016/j.nano.2006.12.00117379174Search in Google Scholar

Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 2009 Apr;22(2):235–242. https://doi.org/10.1007/s10534-008-9159-2KimKJSungWSSuhBKMoonSKChoiJSKimJGLeeDG.Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals.2009Apr;22(2):235242. https://doi.org/10.1007/s10534-008-9159-210.1007/s10534-008-9159-218769871Search in Google Scholar

Kobiałka N, Mularczyk M, Kosiorowska K, Pilarska K, Łaba W, Piegza M, Robak M. New strains of filamentous fungi isolated from construction materials. EJPAU. 2019;22(1):#02. https://doi.org/10.30825/5.ejpau.169.2019.22.1KobiałkaNMularczykMKosiorowskaKPilarskaKŁabaWPiegzaMRobakM.New strains of filamentous fungi isolated from construction materials. EJPAU.2019;22(1):#02. https://doi.org/10.30825/5.ejpau.169.2019.22.110.30825/5.EJPAU.169.2019.22.1Search in Google Scholar

Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine. 2010 Aug;6(4):570–574. https://doi.org/10.1016/j.nano.2009.12.002KokuraSHandaOTakagiTIshikawaTNaitoYYoshikawaT.Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine.2010Aug;6(4):570574. https://doi.org/10.1016/j.nano.2009.12.00210.1016/j.nano.2009.12.00220060498Search in Google Scholar

Koziróg A, Rajkowska K, Otlewska A, Piotrowska M, Kunicka-Styczyńska A, Brycki B, Nowicka-Krawczyk P, Kościelniak M, Gutarowska B. Protection of historical wood against microbial degradation – selection and application of microbiocides. Int J Mol Sci. 2016 Aug 22;17(8):1364. https://doi.org/10.3390/ijms17081364KozirógARajkowskaKOtlewskaAPiotrowskaMKunicka-StyczyńskaABryckiBNowicka-KrawczykPKościelniakMGutarowskaB.Protection of historical wood against microbial degradation – selection and application of microbiocides. Int J Mol Sci.2016Aug 22;17(8):1364. https://doi.org/10.3390/ijms1708136410.3390/ijms17081364500075927556450Search in Google Scholar

Koźlecki T, Teterycz H, Sokołowski A, Polowczyk I, Sawiński W, Maliszewska I, Szydło J. Sposób syntezowania nanocząstek srebra. PL Patent deposition 2011; No P395979.KoźleckiTTeteryczHSokołowskiAPolowczykISawińskiWMaliszewskaISzydłoJ.Sposób syntezowania nanocząstek srebra. PL Patent deposition 2011; No P395979.Search in Google Scholar

Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jiménez MJ, Jose-Yacaman M. Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobio technology. 2015 Dec;13(1):91–102. https://doi.org/10.1186/s12951-015-0147-8LaraHHRomero-UrbinaDGPierceCLopez-RibotJLArellano-JiménezMJJose-YacamanM.Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobio technology.2015Dec;13(1):91102. https://doi.org/10.1186/s12951-015-0147-810.1186/s12951-015-0147-8467864126666378Search in Google Scholar

Latgé JP, Mouyna I, Tekaia F, Beauvais A, Debeaupuis JP, Nierman W. Specific molecular features in the organization and bio synthesis of the cell wall of Aspergillus fumigatus. Med Mycol. 2005 Jan;43(s1) Suppl 1:15–22. https://doi.org/10.1080/13693780400029155LatgéJPMouynaITekaiaFBeauvaisADebeaupuisJPNiermanW.Specific molecular features in the organization and bio synthesis of the cell wall of Aspergillus fumigatus. Med Mycol.2005Jan;43(s1) Suppl 1:1522. https://doi.org/10.1080/1369378040002915510.1080/1369378040002915516110787Search in Google Scholar

Lee S, Jun BH. Silver Nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci. 2019 Feb 17;20(4):865. https://doi.org/10.3390/ijms20040865LeeSJunBH.Silver Nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci.2019Feb 17;20(4):865. https://doi.org/10.3390/ijms2004086510.3390/ijms20040865641218830781560Search in Google Scholar

Li WR, Xie XB, Shi QS, Zeng HY, OU-Yang YS, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010 Jan;85(4):1115–1122. https://doi.org/10.1007/s00253-009-2159-5LiWRXieXBShiQSZengHYOU-YangYSChenYB.Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol.2010Jan;85(4):11151122. https://doi.org/10.1007/s00253-009-2159-510.1007/s00253-009-2159-519669753Search in Google Scholar

Li XZ, Nikaido H, Williams KE. Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol. 1997 Oct;179(19):6127–6132. https://doi.org/10.1128/jb.179.19.6127-6132.1997LiXZNikaidoHWilliamsKE.Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol.1997Oct;179(19):61276132. https://doi.org/10.1128/jb.179.19.6127-6132.199710.1128/jb.179.19.6127-6132.19971795189324262Search in Google Scholar

Łukaszuk CR, Krajewska-Kułak E, Kułak W. Effects of fungal air pollution on human health. Prog Health Sci. 2011;1(2):156–164.ŁukaszukCRKrajewska-KułakEKułakW.Effects of fungal air pollution on human health. Prog Health Sci.2011;1(2):156164.Search in Google Scholar

Martinez-Gutierrez F, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, Ruiz F, Bach H, Av-Gay Y. Synthesis, cha rac terization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine. 2010 Oct;6(5):681–688. https://doi.org/10.1016/j.nano.2010.02.001Martinez-GutierrezFOlivePLBanuelosAOrrantiaENinoNSanchezEMRuizFBachHAv-GayY.Synthesis, cha rac terization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine.2010Oct;6(5):681688. https://doi.org/10.1016/j.nano.2010.02.00110.1016/j.nano.2010.02.00120215045Search in Google Scholar

McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. Yao Wu Shi Pin Fen Xi. 2014 Mar;22(1):116–127. https://doi.org/10.1016/j.jfda.2014.01.010McShanDRayPCYuH.Molecular toxicity mechanism of nanosilver. Yao Wu Shi Pin Fen Xi.2014Mar;22(1):116127. https://doi.org/10.1016/j.jfda.2014.01.01010.1016/j.jfda.2014.01.010428102424673909Search in Google Scholar

Metak AM, Ajaal TT. Investigation on polymer based nano-silver as packaging materials. Int Schol Scien Res Inn. 2013;7(12):772–778.MetakAMAjaalTT.Investigation on polymer based nano-silver as packaging materials. Int Schol Scien Res Inn.2013;7(12):772778.Search in Google Scholar

Milić M, Leitinger G, Pavičić I, Zebić Avdičević M, Dobrović S, Goessler W, Vinković Vrček I. Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol. 2015 Jun;35(6):581–592. https://doi.org/10.1002/jat.3081MilićMLeitingerGPavičićIZebić AvdičevićMDobrovićSGoesslerWVinković VrčekI.Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol.2015Jun;35(6):581592. https://doi.org/10.1002/jat.308110.1002/jat.308125352480Search in Google Scholar

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. The bactericidal effect of silver nanopar ticles. Nanotechnology. 2005 Oct 01;16(10):2346–2353. https://doi.org/10.1088/0957-4484/16/10/059MoronesJRElechiguerraJLCamachoAHoltKKouriJBRamírezJTYacamanMJ.The bactericidal effect of silver nanopar ticles. Nanotechnology.2005Oct 01;16(10):23462353. https://doi.org/10.1088/0957-4484/16/10/05910.1088/0957-4484/16/10/05920818017Search in Google Scholar

Nowicka-Krawczyk P, Żelazna-Wieczorek J, Koźlecki T. Silver nano particles as a control agent against facades coated by aerial algae – A model study of Apatococcus lobatus (green algae). PLoS One. 2017 Aug 14;12(8):e0183276. https://doi.org/10.1371/journal.pone.0183276Nowicka-KrawczykPŻelazna-WieczorekJKoźleckiT.Silver nano particles as a control agent against facades coated by aerial algae – A model study of Apatococcus lobatus (green algae). PLoS One.2017Aug 14;12(8):e0183276. https://doi.org/10.1371/journal.pone.018327610.1371/journal.pone.0183276555556528806422Search in Google Scholar

Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007 Mar 15;73(6):1712–1720. https://doi.org/10.1128/AEM.02218-06PalSTakYKSongJM.Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol.2007Mar 15;73(6):17121720. https://doi.org/10.1128/AEM.02218-0610.1128/AEM.02218-06182879517261510Search in Google Scholar

Park MVDZ, Neigh AM, Vermeulen JP, de la Fonteyne LJJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011 Dec;32(36):9810–9817. https://doi.org/10.1016/j.biomaterials.2011.08.085ParkMVDZNeighAMVermeulenJPde la FonteyneLJJVerharenHWBriedéJJvan LoverenHde JongWH.The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials.2011Dec;32(36):98109817. https://doi.org/10.1016/j.biomaterials.2011.08.08510.1016/j.biomaterials.2011.08.08521944826Search in Google Scholar

PN-EN ISO 846. Polska norma. Tworzywa sztuczne. Ocena działania mikroorganizmów [Plastics-Evaluation of the action of the microorganisms, actualization 2019:05]. 2002 Dec.PN-EN ISO 846.Polska norma. Tworzywa sztuczne. Ocena działania mikroorganizmów [Plastics-Evaluation of the action of the microorganisms, actualization 2019:05]. 2002Dec.Search in Google Scholar

Pulit J, Banach M, Szczygłowska R, Bryk M. Nanosilver against fungi. Silver nanoparticles as an effective biocidal factor. Acta Biochim Pol. 2013;60(4):795–798.PulitJBanachMSzczygłowskaRBrykM.Nanosilver against fungi. Silver nanoparticles as an effective biocidal factor. Acta Biochim Pol.2013;60(4):795798.Search in Google Scholar

Radhakrishnan VS, Reddy Mudiam MK, Kumar M, Dwivedi SP, Singh SP, Prasad T. Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). Int J Nano medicine. 2018 May;13:2647–2663. https://doi.org/10.2147/IJN.S150648RadhakrishnanVSReddy MudiamMKKumarMDwivediSPSinghSPPrasadT.Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). Int J Nano medicine.2018May;13:26472663. https://doi.org/10.2147/IJN.S15064810.2147/IJN.S150648593749329760548Search in Google Scholar

Rahman M, Laurent S, Tawil N, Yahia L, Mahmoudi M. Nanoparticle and protein corona. In: Protein-nanoparticles interactions. The Bio-Nano Interface. Springer Series in Biophysics. Berlin, Heidel berg (Germany): Springer; 2013;15. p. 21–44. https://doi.org/10.1007/978-3-642-37555-2_2RahmanMLaurentSTawilNYahiaLMahmoudiM.Nanoparticle and protein corona. In: Protein-nanoparticles interactions. The Bio-Nano Interface. Springer Series in Biophysics. Berlin, Heidel berg (Germany): Springer; 2013;15. p. 2144. https://doi.org/10.1007/978-3-642-37555-2_210.1007/978-3-642-37555-2_2Search in Google Scholar

Rai M, Ingle AP, Gaikwad S, Gupta I, Gade A, Silvério da Silva S. Nanotechnology based anti-infectives to fight microbial intrusions. J Appl Microbiol. 2016 Mar;120(3):527–542. https://doi.org/10.1111/jam.13010RaiMIngleAPGaikwadSGuptaIGadeASilvério da SilvaS.Nanotechnology based anti-infectives to fight microbial intrusions. J Appl Microbiol.2016Mar;120(3):527542. https://doi.org/10.1111/jam.1301010.1111/jam.1301026599354Search in Google Scholar

Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009 Jan;27(1):76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002RaiMYadavAGadeA.Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv.2009Jan;27(1):7683. https://doi.org/10.1016/j.biotechadv.2008.09.00210.1016/j.biotechadv.2008.09.00218854209Search in Google Scholar

Riaz Ahmed KB, Nagy AM, Brown RP, Zhang Q, Malghan SG, Goering PL. Silver nanoparticles: significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol In Vitro. 2017 Feb;38:179–192. https://doi.org/10.1016/j.tiv.2016.10.012Riaz AhmedKBNagyAMBrownRPZhangQMalghanSGGoeringPL.Silver nanoparticles: significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol In Vitro.2017Feb;38:179192. https://doi.org/10.1016/j.tiv.2016.10.01210.1016/j.tiv.2016.10.01227816503Search in Google Scholar

Robak M. Yarrowia lipolytica specific growth rate on acetate medium supplemented with glucose, glycerol or ethanol. Acta Sci Polon Biotechnologia. 2007;6(1):23–31.RobakM.Yarrowia lipolytica specific growth rate on acetate medium supplemented with glucose, glycerol or ethanol. Acta Sci Polon Biotechnologia.2007;6(1):2331.Search in Google Scholar

Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother. 2008 Feb 04;61(4):869–876. https://doi.org/10.1093/jac/dkn034RoeDKarandikarBBonn-SavageNGibbinsBRoulletJB.Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother.2008Feb 04;61(4):869876. https://doi.org/10.1093/jac/dkn03410.1093/jac/dkn03418305203Search in Google Scholar

Salvadori MR, Nascimento CAO, Corrêa B. Nickel oxide nanopar ticles film produced by dead biomass of filamentous fungus. Sci Rep. 2015 May;4(1):6404. https://doi.org/10.1038/srep06404SalvadoriMRNascimentoCAOCorrêaB.Nickel oxide nanopar ticles film produced by dead biomass of filamentous fungus. Sci Rep.2015May;4(1):6404. https://doi.org/10.1038/srep0640410.1038/srep06404416597625228324Search in Google Scholar

Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine. 2007 Jun;3(2):168–171. https://doi.org/10.1016/j.nano.2007.02.001ShahverdiARFakhimiAShahverdiHRMinaianS.Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine.2007Jun;3(2):168171. https://doi.org/10.1016/j.nano.2007.02.00110.1016/j.nano.2007.02.00117468052Search in Google Scholar

Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004 Jul;275(1):177–182. https://doi.org/10.1016/j.jcis.2004.02.012SondiISalopek-SondiB.Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci.2004Jul;275(1):177182. https://doi.org/10.1016/j.jcis.2004.02.01210.1016/j.jcis.2004.02.01215158396Search in Google Scholar

Song H, Li B, Lin QB, Wu HJ, Chen Y. Migration of silver from nanosilver–polyethylene composite packaging into food simulants. Food Additives & Contaminants: Part A. 2011 Jul 08;28(12):1–5. https://doi.org/10.1080/19440049.2011.603705SongHLiBLinQBWuHJChenY.Migration of silver from nanosilver–polyethylene composite packaging into food simulants. Food Additives & Contaminants: Part A.2011Jul 08;28(12):15. https://doi.org/10.1080/19440049.2011.60370510.1080/19440049.2011.60370521985020Search in Google Scholar

Tran QH, Nguyen VQ, Le A-T. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013;4:033001, 20 pp, https://doi.org/10.1088/2043-6262/4/3/033001TranQHNguyenVQLeA-T.Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol.2013;4:033001, 20 pp, https://doi.org/10.1088/2043-6262/4/3/03300110.1088/2043-6262/4/3/033001Search in Google Scholar

Wen R, Hu L, Qu G, Zhou Q, Jiang G. Exposure, tissue biodistribution, and biotransformation of nanosilver. NanoImpact. 2016 Apr;2:18–28. https://doi.org/10.1016/j.impact.2016.06.001WenRHuLQuGZhouQJiangG.Exposure, tissue biodistribution, and biotransformation of nanosilver. NanoImpact.2016Apr;2:1828. https://doi.org/10.1016/j.impact.2016.06.00110.1016/j.impact.2016.06.001Search in Google Scholar

Xu Y, Gao C, Li X, He Y, Zhou L, Pang G, Sun S. In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. J Ocul Pharmacol Ther. 2013 Mar;29(2):270–274. https://doi.org/10.1089/jop.2012.0155XuYGaoCLiXHeYZhouLPangGSunS.In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. J Ocul Pharmacol Ther.2013Mar;29(2):270274. https://doi.org/10.1089/jop.2012.015510.1089/jop.2012.015523410063Search in Google Scholar

Yoon KY, Hoon Byeon J, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ. 2007 Feb;373(2-3):572–575. https://doi.org/10.1016/j.scitotenv.2006.11.007YoonKYHoon ByeonJParkJHHwangJ.Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ.2007Feb;373(2-3):572575. https://doi.org/10.1016/j.scitotenv.2006.11.00710.1016/j.scitotenv.2006.11.00717173953Search in Google Scholar

Zarschler K, Rocks L, Licciardello N, Boselli L, Polo E, Garcia KP, De Cola L, Stephan H, Dawson KA. Ultrasmall inorganic nanoparticles: state-of-the-art and perspectives for biomedical appli cations. Nanomedicine. 2016 Aug;12(6):1663–1701. https://doi.org/10.1016/j.nano.2016.02.019ZarschlerKRocksLLicciardelloNBoselliLPoloEGarciaKPDe ColaLStephanHDawsonKA.Ultrasmall inorganic nanoparticles: state-of-the-art and perspectives for biomedical appli cations. Nanomedicine.2016Aug;12(6):16631701. https://doi.org/10.1016/j.nano.2016.02.01910.1016/j.nano.2016.02.01927013135Search in Google Scholar

Zhang X-F, Liu Z-G, Shen W. Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and thera peutic approaches. Int J Mol Sci. 2016a;17(9):1534. https://doi.org/10.3390/ijms17091534ZhangX-FLiuZ-GShenW.GurunathanS.Silver nanoparticles: synthesis, characterization, properties, applications, and thera peutic approaches. Int J Mol Sci.2016a;17(9):1534. https://doi.org/10.3390/ijms1709153410.3390/ijms17091534503780927649147Search in Google Scholar

Zhang X-F, Shen W, Gurunathan S. Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int J Med Sci. 2016b;17:1603. https://doi.org/10.3390/ijmps17101603ZhangX-FShenWGurunathanS.Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int J Med Sci.2016b;17:1603. https://doi.org/10.3390/ijmps17101603Search in Google Scholar

Zou J, Hannula M, Misra S, Feng H, Labrador R, Aula AS, Hyttinen J, Pyykkö I. Micro CT visualization of silver nanoparticles in the middle and inner ear of rat and transportation pathway after transtympanic injection. J Nanobiotechnology. 2015;13(1):5. https://doi.org/10.1186/s12951-015-0065-9ZouJHannulaMMisraSFengHLabradorRAulaASHyttinenJPyykköI.Micro CT visualization of silver nanoparticles in the middle and inner ear of rat and transportation pathway after transtympanic injection. J Nanobiotechnology.2015;13(1):5. https://doi.org/10.1186/s12951-015-0065-910.1186/s12951-015-0065-9431260125622551Search in Google Scholar

Żarowska B, Piegza M, Jaros-Koźlecka K, Koźlecki T, Robak M. Antimicrobial activity of silver nanoparticles. Conference material: Wrocław (Poland): BRIA; 2015;55.ŻarowskaBPiegzaMJaros-KoźleckaKKoźleckiTRobakM.Antimicrobial activity of silver nanoparticles. Conference material: Wrocław (Poland): BRIA; 2015;55.Search in Google Scholar

eISSN:
2544-4646
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Microbiology and Virology