Accès libre

Analysis of the Amino Acid Sequence Variation of the 67–72p Protein and the Structural Pili Proteins of Corynebacterium diphtheriae for their Suitability as Potential Vaccine Antigens

À propos de cet article

Citez

Barocchi MA, Ries J, Zogaj X, Hemsley C, Albiger B, Kanth A, Dahlberg S, Fernebro J, Moschioni M, Masignani V, et al. A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci USA. 2006 Feb 21;103(8):2857–2862. doi:10.1073/pnas.0511017103 MedlineBarocchiMARiesJZogajXHemsleyCAlbigerBKanthADahlbergSFernebroJMoschioniMMasignaniVet alA pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci USA. 2006Feb 21;103(8):28572862. doi:10.1073/pnas.0511017103Medline136896216481624Open DOISearch in Google Scholar

Belko J, Wessel DL, Malley R. Endocarditis caused by Corynebacterium diphtheriae: case report and review of the literature. Pediatr Infect Dis J. 2000 Feb;19(2):159–163. doi:10.1097/00006454-200002000-00015 MedlineBelkoJWesselDLMalleyREndocarditis caused by Corynebacterium diphtheriae: case report and review of the literature. Pediatr Infect Dis J. 2000Feb;19(2):159163. doi:10.1097/00006454-200002000-00015Medline10694006Open DOISearch in Google Scholar

Bui HH, Sidney J, Peters B, Sathiamurthy M, Sinichi A, Purton KA, Mothé BR, Chisari FV, Watkins DI, Sette A. Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics. 2005 Jun; 57(5):304–314. doi:10.1007/s00251-005-0798-y MedlineBuiHHSidneyJPetersBSathiamurthyMSinichiAPurtonKAMothéBRChisariFVWatkinsDISetteAAutomated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics. 2005 Jun; 57(5):304314. doi:10.1007/s00251-005-0798-yMedline15868141Open DOISearch in Google Scholar

Cerdeño-Tárraga AM, Efstratiou A, Dover LG, Holden MT, Pallen M, Bentley SD, Besra GS, Churcher C, James KD, De Zoysa A, et al. The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res. 2003 Nov 15; 31(22):6516–6523. doi:10.1093/nar/gkg874 MedlineCerdeño-TárragaAMEfstratiouADoverLGHoldenMTPallenMBentleySDBesraGSChurcherCJamesKDDe ZoysaAet alThe complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res. 2003Nov 15; 31(22):65166523. doi:10.1093/nar/gkg874Medline27556814602910Open DOISearch in Google Scholar

Christensen H, Hickman M, Edmunds WJ, Trotter CL. Introducing vaccination against serogroup B meningococcal disease: an economic and mathematical modelling study of potential impact. Vaccine. 2013 May;31(23):2638–2646. doi:10.1016/j.vaccine.2013.03.034 MedlineChristensenHHickmanMEdmundsWJTrotterCLIntroducing vaccination against serogroup B meningococcal disease: an economic and mathematical modelling study of potential impact. Vaccine. 2013May;31(23):26382646. doi:10.1016/j.vaccine.2013.03.034Medline374304523566946Open DOISearch in Google Scholar

Colombo AV, Hirata R Jr, Souza CÃMR, Monteiro-Leal LH, Previato JO, Formiga LCD, Andrade AFB, Mattos-Guaraldi ALÌ. Corynebacterium diphtheriae surface proteins as adhesins to human erythrocytes. FEMS Microbiol Lett. 2001 Apr;197(2):235–239. doi:10.1111/j.1574-6968.2001.tb10609.x MedlineColomboAVHirataRJrSouzaCÃMRMonteiro-LealLHPreviatoJOFormigaLCDAndradeAFBMattos-GuaraldiALÌCorynebacterium diphtheriae surface proteins as adhesins to human erythrocytes. FEMS Microbiol Lett. 2001Apr;197(2):235239. doi:10.1111/j.1574-6968.2001.tb10609.xMedline11313140Open DOISearch in Google Scholar

Dangel A, Berger A, Konrad R, Bischoff H, Sing A. Geographically Diverse Clusters of Non-Toxigenic Corynebacterium diphtheriae Infection, Germany, 2016–2017. Emerg Infect Dis. 2018 Jul;24(7): 1239–1245. doi:10.3201/eid2407.172026 MedlineDangelABergerAKonradRBischoffHSingAGeographically Diverse Clusters of Non-Toxigenic Corynebacterium diphtheriae Infection, Germany, 2016–2017. Emerg Infect Dis. 2018Jul;24(7): 12391245. doi:10.3201/eid2407.172026Medline603875229912709Open DOISearch in Google Scholar

Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007 Dec;8(1):4. doi:10.1186/1471-2105-8-4 MedlineDoytchinovaIAFlowerDRVaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007Dec;8(1):4. doi:10.1186/1471-2105-8-4Medline178005917207271Open DOISearch in Google Scholar

Droppa-Almeida D, Franceschi E, Padilha FF. Immune-informatic analysis and design of peptide vaccine from multi-epitopes against Corynebacterium pseudotuberculosis. Bioinform Biol Insights. 2018 Jan;12:1–9. doi:10.1177/1177932218755337 MedlineDroppa-AlmeidaDFranceschiEPadilhaFFImmune-informatic analysis and design of peptide vaccine from multi-epitopes against Corynebacterium pseudotuberculosis. Bioinform Biol Insights. 2018Jan;12:19. doi:10.1177/1177932218755337Medline595444429780242Open DOISearch in Google Scholar

Edwards B, Hunt AC, Hoskisson PA. Recent cases of non-toxigenic Corynebacterium diphtheriae in Scotland: justification for continued surveillance. J Med Microbiol. 2011 Apr 01;60(4): 561–562. doi:10.1099/jmm.0.025643-0 MedlineEdwardsBHuntACHoskissonPARecent cases of non-toxigenic Corynebacterium diphtheriae in Scotland: justification for continued surveillance. J Med Microbiol. 2011Apr 01;60(4): 561562. doi:10.1099/jmm.0.025643-0Medline21212144Open DOISearch in Google Scholar

Fleri W. Selecting thresholds (cut-offs) for MHC class I and II binding predictions [Internet]. IEDB Solutions Center; 2014 [cited 2019 January 22]. Available from https://help.iedb.org/hc/en-us/articles/114094151811-Selecting-thresholds-cut-offs-forMHC-class-I-and-II-bind-ing-predictionsFleriWSelecting thresholds (cut-offs) for MHC class I and II binding predictions [Internet]. IEDB Solutions Center; 2014[cited 2019 January 22]. Available from https://help.iedb.org/hc/en-us/articles/114094151811-Selecting-thresholds-cut-offs-forMHC-class-I-and-II-bind-ing-predictionsSearch in Google Scholar

Fricchione MJ, Deyro HJ, Jensen CY, Hoffman JF, Singh K, Logan LK. Non-toxigenic penicillin and cephalosporin-resistant Corynebacterium diphtheriae endocarditis in a child: a case report and review of the literature. J Pediatric Infect Dis Soc. 2014 Sep 01;3(3):251–254. doi:10.1093/jpids/pit022 MedlineFricchioneMJDeyroHJJensenCYHoffmanJFSinghKLoganLKNon-toxigenic penicillin and cephalosporin-resistant Corynebacterium diphtheriae endocarditis in a child: a case report and review of the literature. J Pediatric Infect Dis Soc. 2014Sep 01;3(3):251254. doi:10.1093/jpids/pit022Medline26625388Open DOISearch in Google Scholar

Gaspar AH, Ton-That H. Assembly of distinct pilus structures on the surface of Corynebacterium diphtheriae. J Bacteriol. 2006 Feb 15;188(4):1526–1533. doi:10.1128/JB.188.4.1526-1533.2006 MedlineGasparAHTon-ThatHAssembly of distinct pilus structures on the surface of Corynebacterium diphtheriae. J Bacteriol. 2006Feb 15;188(4):15261533. doi:10.1128/JB.188.4.1526-1533.2006Medline136725416452436Open DOISearch in Google Scholar

Haggar A, Hussain M, Lönnies H, Herrmann M, Norrby-Teglund A, Flock JI. Extracellular adherence protein from Staphylococcus aureus enhances internalization into eukaryotic cells. Infect Immun. 2003 May 01;71(5):2310–2317. doi:10.1128/IAI.71.5.2310-2317.2003 MedlineHaggarAHussainMLönniesHHerrmannMNorrby-TeglundAFlockJIExtracellular adherence protein from Staphylococcus aureus enhances internalization into eukaryotic cells. Infect Immun. 2003May 01;71(5):23102317. doi:10.1128/IAI.71.5.2310-2317.2003Medline15321712704099Open DOISearch in Google Scholar

Hirata R Jr, Souza SMS, Rocha-de-Souza CM, Andrade AFB, Monteiro-Leal LH, Formiga LCD, Mattos-Guaraldi AL. Patterns of adherence to HEp-2 cells and actin polymerisation by toxigenic Corynebacterium diphtheriae strains. Microb Pathog. 2004 Mar; 36(3):125–130. doi:10.1016/j.micpath.2003.10.002 MedlineHirataRJrSouzaSMSRocha-de-SouzaCMAndradeAFBMonteiro-LealLHFormigaLCDMattos-GuaraldiALPatterns of adherence to HEp-2 cells and actin polymerisation by toxigenic Corynebacterium diphtheriae strains. Microb Pathog. 2004 Mar; 36(3):125130. doi:10.1016/j.micpath.2003.10.002Medline14726229Open DOISearch in Google Scholar

Honda E, Yanagawa R. Attachment of Corynebacterium renale to tissue culture cells by the pili. Am J Vet Res. 1975 Nov;36(11):1663–1666. MedlineHondaEYanagawaRAttachment of Corynebacterium renale to tissue culture cells by the pili. Am J Vet Res. 1975Nov;36(11):16631666. MedlineSearch in Google Scholar

Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017 Jul 03;45(W1): W24–W29. doi:10.1093/nar/gkx346JespersenMCPetersBNielsenMMarcatiliPBepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017Jul 03;45(W1): W24W29. doi:10.1093/nar/gkx346557023028472356Open DOISearch in Google Scholar

Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, et al. Immune epitope database analysis resource. Nucleic Acids Res. 2012 Jul 01;40(W1):W525–W530. doi:10.1093/nar/gks438KimYPonomarenkoJZhuZTamangDWangPGreenbaumJet alImmune epitope database analysis resource. Nucleic Acids Res. 2012Jul 01;40(W1):W525W530. doi:10.1093/nar/gks438339428822610854Open DOISearch in Google Scholar

Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, Scarselli M, Tettelin H, Brettoni C, Iacobini ET, Rosini R, et al. Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science. 2005 Jul 01;309(5731):148–150. doi:10.1126/science.1109869 MedlineMaioneDMargaritIRinaudoCDMasignaniVMoraMScarselliMTettelinHBrettoniCIacobiniETRosiniRet alIdentification of a universal Group B streptococcus vaccine by multiple genome screen. Science. 2005Jul 01;309(5731):148150. doi:10.1126/science.1109869Medline135109215994562Open DOISearch in Google Scholar

Mandlik A, Das A, Ton-That H. The molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria. Proc Natl Acad Sci USA. 2008 Sep 16;105(37):14147–14152. doi:10.1073/pnas.0806350105 MedlineMandlikADasATon-ThatHThe molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria. Proc Natl Acad Sci USA. 2008Sep 16;105(37):1414714152. doi:10.1073/pnas.0806350105Medline273411218779588Open DOISearch in Google Scholar

Mandlik A, Swierczynski A, Das A, Ton-That H. Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol Microbiol. 2007 Apr;64(1):111–124. doi:10.1111/j.1365-2958.2007.05630.x MedlineMandlikASwierczynskiADasATon-ThatHCorynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol Microbiol. 2007Apr;64(1):111124. doi:10.1111/j.1365-2958.2007.05630.xMedline284490417376076Open DOISearch in Google Scholar

Marraffini LA, DeDent AC, Schneewind O. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol Mol Biol Rev. 2006 Mar 01;70(1):192–221. doi:10.1128/MMBR.70.1.192-221.2006 MedlineMarraffiniLADeDentACSchneewindOSortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol Mol Biol Rev. 2006Mar 01;70(1):192221. doi:10.1128/MMBR.70.1.192-221.2006Medline139325316524923Open DOISearch in Google Scholar

Mattos-Guaraldi AL, Cappelli EA, Previato JO, Formiga LCD, Andrade AFB. Characterization of surface saccharides in two Corynebacterium diphtheriae strains. FEMS Microbiol Lett. 1999a Jan;170(1):159–166. doi:10.1111/j.1574-6968.1999.tb13369.x MedlineMattos-GuaraldiALCappelliEAPreviatoJOFormigaLCDAndradeAFBCharacterization of surface saccharides in two Corynebacterium diphtheriae strains. FEMS Microbiol Lett. 1999aJan;170(1):159166. doi:10.1111/j.1574-6968.1999.tb13369.xMedlineOpen DOISearch in Google Scholar

Mattos-Guaraldi AL, Duarte Formiga LC, Pereira GA. Cell surface components and adhesionin Corynebacterium diphtheriae. Microbes Infect. 2000 Oct;2(12):1507–1512. doi:10.1016/S1286-4579(00)01305-8 MedlineMattos-GuaraldiALDuarte FormigaLCPereiraGACell surface components and adhesionin Corynebacterium diphtheriae. Microbes Infect. 2000Oct;2(12):15071512. doi:10.1016/S1286-4579(00)01305-8MedlineOpen DOISearch in Google Scholar

Mattos-Guaraldi AL, Formiga LCD, Andrade AFB. Cell surface hydrophobicity of sucrose fermenting and nonfermenting Corynebacterium diphtheriae strains evaluated by different methods. Curr Microbiol. 1999b Jan;38(1):37–42. doi:10.1007/PL00006769 MedlineMattos-GuaraldiALFormigaLCDAndradeAFBCell surface hydrophobicity of sucrose fermenting and nonfermenting Corynebacterium diphtheriae strains evaluated by different methods. Curr Microbiol. 1999bJan;38(1):3742. doi:10.1007/PL00006769Medline9841780Open DOISearch in Google Scholar

Mattos-Guaraldi AL, Formiga LCD, Andrade AFB. Trans-Sialidase activity for sialic acid incorporation on Corynebacterium diphtheriae. FEMS Microbiol Lett. 1998 Nov;168(2):167–172. doi:10.1111/j.1574-6968.1998.tb13269.x MedlineMattos-GuaraldiALFormigaLCDAndradeAFBTrans-Sialidase activity for sialic acid incorporation on Corynebacterium diphtheriae. FEMS Microbiol Lett. 1998Nov;168(2):167172. doi:10.1111/j.1574-6968.1998.tb13269.xMedline9835025Open DOISearch in Google Scholar

Moreira LO, Andrade AFB, Vale MD, Souza SMS, Hirata R Jr, Asad LMOB, Asad NR, Monteiro-Leal LH, Previato JO, Mattos-Guaraldi AL. Effects of iron limitation on adherence and cell surface carbohydrates of Corynebacterium diphtheriae strains. Appl Environ Microbiol. 2003 Oct 01;69(10):5907–5913. doi:10.1128/AEM.69.10.5907-5913.2003 MedlineMoreiraLOAndradeAFBValeMDSouzaSMSHirataRJrAsadLMOBAsadNRMonteiro-LealLHPreviatoJOMattos-GuaraldiALEffects of iron limitation on adherence and cell surface carbohydrates of Corynebacterium diphtheriae strains. Appl Environ Microbiol. 2003Oct 01;69(10):59075913. doi:10.1128/AEM.69.10.5907-5913.2003Medline20125514532043Open DOISearch in Google Scholar

Mosley JF 2nd, Smith LL, Parke CK, Brown JA, LaFrance JM, Clark PK. Quadracel: vaccination against diphtheria, tetanus, pertussis, and poliomyelitis in children. P T. 2016 Apr;41(4):238–253. MedlineMosleyJF2ndSmithLLParkeCKBrownJALaFranceJMClarkPKQuadracel: vaccination against diphtheria, tetanus, pertussis, and poliomyelitis in children. P T. 2016Apr;41(4):238253. MedlineSearch in Google Scholar

Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus S, Brunak S, Lund O. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003 May;12(5):1007–1017. doi:10.1110/ps.0239403 MedlineNielsenMLundegaardCWorningPLauemøllerSLLamberthKBuusSBrunakSLundOReliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003May;12(5):10071017. doi:10.1110/ps.0239403Medline232387112717023Open DOISearch in Google Scholar

Paul S, Weiskopf D, Angelo MA, Sidney J, Peters B, Sette A. HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity. J Immunol. 2013 Dec 15;191(12):5831–5839. doi:10.4049/jimmunol.1302101 MedlinePaulSWeiskopfDAngeloMASidneyJPetersBSetteAHLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity. J Immunol. 2013Dec 15;191(12):58315839. doi:10.4049/jimmunol.1302101Medline387296524190657Open DOISearch in Google Scholar

Proft T, Baker EN. Pili in Gram-negative and Gram-positive bacteria – structure, assembly and their role in disease. Cell Mol Life Sci. 2009 Feb;66(4):613–635. doi:10.1007/s00018-008-8477-4 MedlineProftTBakerENPili in Gram-negative and Gram-positive bacteria – structure, assembly and their role in disease. Cell Mol Life Sci. 2009Feb;66(4):613635. doi:10.1007/s00018-008-8477-4Medline18953686Open DOISearch in Google Scholar

Reardon-Robinson ME, Ton-That H. Assembly and function of Corynebacterium diphtheriae pili. In: Burkovski A, editor. Corynebacterium diphtheriae and related toxigenic species. Dordrecht (Netherlands): Springer; 2014. p. 123–141.Reardon-RobinsonMETon-ThatHAssembly and function of Corynebacterium diphtheriae pili. In: BurkovskiA, editor. Corynebacterium diphtheriae and related toxigenic species. Dordrecht (Netherlands): Springer; 2014. p. 123141.10.1007/978-94-007-7624-1_7Search in Google Scholar

Rogers EA, Das A, Ton-That H. Adhesion by pathogenic corynebacteria. Adv Exp Med Biol. 2011;715:91–103. doi:10.1007/978-94-007-0940-9_6 MedlineRogersEADasATon-ThatHAdhesion by pathogenic corynebacteria. Adv Exp Med Biol. 2011;715:91103. doi:10.1007/978-94-007-0940-9_6Medline21557059Open DOISearch in Google Scholar

Sabbadini PS, Assis MC, Trost E, Gomes DLR, Moreira LO, dos Santos CS, Pereira GA, Nagao PE, Azevedo VAC, Hirata Júnior R, et al. Corynebacterium diphtheriae 67-72p hemagglutinin, characterized as the protein DIP0733, contributes to invasion and induction of apoptosis in HEp-2 cells. Microb Pathog. 2012 Mar;52(3):165–176. doi:10.1016/j.micpath.2011.12.003 MedlineSabbadiniPSAssisMCTrostEGomesDLRMoreiraLOdos SantosCSPereiraGANagaoPEAzevedoVACHirata JúniorRet alCorynebacterium diphtheriae 67-72p hemagglutinin, characterized as the protein DIP0733, contributes to invasion and induction of apoptosis in HEp-2 cells. Microb Pathog. 2012Mar;52(3):165176. doi:10.1016/j.micpath.2011.12.003MedlineOpen DOISearch in Google Scholar

Sauer F, Mulvey MA, Schilling JD, Martinez JJ, Hultgren SJ. Bacterial pili: molecular mechanisms of pathogenesis. Curr Opin Microbiol. 2000 Feb 1;3(1):65–72. doi:10.1016/S1369-5274(99)00053-3 MedlineSauerFMulveyMASchillingJDMartinezJJHultgrenSJBacterial pili: molecular mechanisms of pathogenesis. Curr Opin Microbiol. 2000Feb 1;3(1):6572. doi:10.1016/S1369-5274(99)00053-3MedlineOpen DOISearch in Google Scholar

Singh H and Raghava GPS. ProPred1: Prediction of promiscuous MHC class-I binding sites. Bioinformatics. 2003 May 22;19(8): 1009–1014. MedlineSinghH and RaghavaGPSProPred1: Prediction of promiscuous MHC class-I binding sites. Bioinformatics. 2003May 22;19(8): 10091014. Medline10.1093/bioinformatics/btg108Search in Google Scholar

Singh H, Raghava GPS. ProPred: prediction of HLA-DR binding sites. Bioinformatics. 2001 Dec 01;17(12):1236–1237. doi:10.1093/bioinformatics/17.12.1236 MedlineSinghHRaghavaGPSProPred: prediction of HLA-DR binding sites. Bioinformatics. 2001Dec 01;17(12):12361237. doi:10.1093/bioinformatics/17.12.1236MedlineOpen DOISearch in Google Scholar

Soriani M, Telford JL. Relevance of pili in pathogenic streptococci pathogenesis and vaccine development. Future Microbiol. 2010 May;5(5):735–747. doi:10.2217/fmb.10.37 MedlineSorianiMTelfordJLRelevance of pili in pathogenic streptococci pathogenesis and vaccine development. Future Microbiol. 2010May;5(5):735747. doi:10.2217/fmb.10.37MedlineOpen DOISearch in Google Scholar

Swierczynski A, Ton-That H. Type III pilus of corynebacteria: pilus length is determined by the level of its major pilin subunit. J Bacteriol. 2006 Sep 01;188(17):6318–6325. doi:10.1128/JB.00606-06 MedlineSwierczynskiATon-ThatHType III pilus of corynebacteria: pilus length is determined by the level of its major pilin subunit. J Bacteriol. 2006Sep 01;188(17):63186325. doi:10.1128/JB.00606-06MedlineOpen DOISearch in Google Scholar

Thanassi DG, Saulino ET, Hultgren SJ. The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr Opin Microbiol. 1998 Apr;1(2):223–231. doi:10.1016/S1369-5274(98)80015-5 MedlineThanassiDGSaulinoETHultgrenSJThe chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr Opin Microbiol. 1998Apr;1(2):223231. doi:10.1016/S1369-5274(98)80015-5MedlineOpen DOISearch in Google Scholar

Ton-That H, Schneewind O. Assembly of pili in Gram-positive bacteria. Trends Microbiol. 2004 May;12(5):228–234. doi:10.1016/j.tim.2004.03.004 MedlineTon-ThatHSchneewindOAssembly of pili in Gram-positive bacteria. Trends Microbiol. 2004May;12(5):228234. doi:10.1016/j.tim.2004.03.004Medline15120142Open DOISearch in Google Scholar

Ton-That H, Schneewind O. Assembly of pili on the surface of Corynebacterium diphtheriae. Mol Microbiol. 2003 Nov;50(4): 1429–1438. doi:10.1046/j.1365-2958.2003.03782.x MedlineTon-ThatHSchneewindOAssembly of pili on the surface of Corynebacterium diphtheriae. Mol Microbiol. 2003Nov;50(4): 14291438. doi:10.1046/j.1365-2958.2003.03782.xMedline14622427Open DOISearch in Google Scholar

Trost E, Blom J, de Castro Soares S, Huang IH, Al-Dilaimi A, Schröder J, Jaenicke S, Dorella FA, Rocha FS, Miyoshi A, et al. Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J Bacteriol. 2012 Jun 15;194(12):3199–3215. doi:10.1128/JB.00183-12 MedlineTrostEBlomJde Castro SoaresSHuangIHAl-DilaimiASchröderJJaenickeSDorellaFARochaFSMiyoshiAet alPangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J Bacteriol. 2012Jun 15;194(12):31993215. doi:10.1128/JB.00183-12Medline337085522505676Open DOISearch in Google Scholar

Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins. 2006 Aug 15;64(3):643–651. doi:10.1002/prot.21018 MedlineYuCSChenYCLuCHHwangJKPrediction of protein subcellular localization. Proteins. 2006Aug 15;64(3):643651. doi:10.1002/prot.21018Medline16752418Open DOISearch in Google Scholar

Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010 Jul 1;26(13):1608–1615. doi:10.1093/bioinformatics/btq249 MedlineYuNYWagnerJRLairdMRMelliGReySLoRDaoPSahinalpSCEsterMFosterLJet alPSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010Jul 1;26(13):16081615. doi:10.1093/bioinformatics/btq249Medline288705320472543Open DOISearch in Google Scholar

Zasada A, Zaleska M, Podlasin R, Seferyńska I. The first case of septicemia due to non-toxigenic Corynebacterium diphtheriae in Poland: case report. Ann Clin Microbiol Antimicrob. 2005;4(1):8. doi:10.1186/1476-0711-4-8 MedlineZasadaAZaleskaMPodlasinRSeferyńskaIThe first case of septicemia due to non-toxigenic Corynebacterium diphtheriae in Poland: case report. Ann Clin Microbiol Antimicrob. 2005;4(1):8. doi:10.1186/1476-0711-4-8Medline115686515876349Open DOISearch in Google Scholar

Zasada AA, Baczewska-Rej M, Wardak S. An increase in non-toxigenic Corynebacterium diphtheriae infections in Poland – molecular epidemiology and antimicrobial susceptibility of strains isolated from past outbreaks and those currently circulating in Poland. Int J Infect Dis. 2010 Oct;14(10):e907–e912. doi:10.1016/j.ijid.2010.05.013 MedlineZasadaAABaczewska-RejMWardakSAn increase in non-toxigenic Corynebacterium diphtheriae infections in Poland – molecular epidemiology and antimicrobial susceptibility of strains isolated from past outbreaks and those currently circulating in Poland. Int J Infect Dis. 2010Oct;14(10):e907e912. doi:10.1016/j.ijid.2010.05.013Medline20728389Open DOISearch in Google Scholar

Zasada AA, Formińska K, Rzeczkowska M. [Occurence of pili genes in Corynebacterium diphtheriae strains] (in Polish). Med Dosw Mikrobiol. 2012;64(1):19–27. MedlineZasadaAAFormińskaKRzeczkowskaM[Occurence of pili genes in Corynebacterium diphtheriae strains] (in Polish). Med Dosw Mikrobiol. 2012;64(1):1927. MedlineSearch in Google Scholar

Zasada AA. Non-Toxigenic highly pathogenic clone of Corynebacterium diphtheriae, Poland, 2004–2012. Emerg Infect Dis. 2013 Nov;19(11):1870–1872. doi:10.3201/eid1911.130297 MedlineZasadaAANon-Toxigenic highly pathogenic clone of Corynebacterium diphtheriae, Poland, 2004–2012. Emerg Infect Dis. 2013Nov;19(11):18701872. doi:10.3201/eid1911.130297Medline383766024209492Open DOISearch in Google Scholar

eISSN:
2544-4646
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Microbiology and Virology