Accès libre

Effect of non-zero mean stress bending-torsion fatigue on fracture surface parameters of 34CrNiMo6 steel notched bars

À propos de cet article

Citez

Abbott, E.J., Firestone, F.A., 1933. Specifying surface quality, Mech. Eng. 65, 569-572.Search in Google Scholar

Arsalani, M., Razfar, M.R., Abdullah, A., Khajehzadeh, M., 2020. Fatigue behavior improvement of hardened parts using sequential hard turning, grinding, and ball burnishing operations, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications.10.1177/1464420720951889Search in Google Scholar

Böhm, M., Kowalski, M., Niesłony, A., 2015. Multiaxial fatigue test stand concept – Stand and control design, Adv. Intell. Syst. Comput. DOI: 10.1007/978-3-319-10990-9_4110.1007/978-3-319-10990-9_41Search in Google Scholar

Branco, R., Costa, J.D., Berto, F., Antunes, F.V., 2017. Effect of loading orientation on fatigue behaviour in severely notched round bars under non-zero mean stress bending-torsion, Theor. Appl. Fract. Mech., 92, 185-197. DOI: 10.1016/J.TAFMEC.2017.07.01510.1016/j.tafmec.2017.07.015Search in Google Scholar

Branco, R., Costa, J.D.M., Antunes, F.V., Perdigão, S., 2016. Monotonic and cyclic behavior of DIN 34CrNiMo6 tempered alloy steel, Metals (Basel). DOI: 10.3390/met605009810.3390/met6050098Search in Google Scholar

Branco, R., Costa, J.D.M., Berto, F., Razavi, S.M.J., Ferreira, J.A.M., Capela, C., Santos, L., Antunes, F., 2018. Low-cycle fatigue behaviour of AISI 18Ni300 maraging steel produced by selective laser melting, Metals (Basel). DOI: 10.3390/met801003210.3390/met8010032Search in Google Scholar

Carpinteri, A., Spagnoli, A., Vantadori, S., Viappiani, D., 2008. A multiaxial criterion for notch high-cycle fatigue using a critical-point method. Eng. Fract, Mech. DOI: 10.1016/j.engfracmech.2006.11.00210.1016/j.engfracmech.2006.11.002Search in Google Scholar

Feng, X., Senin, N., Su, R., Ramasamy, S., Leach, R., 2019. Optical measurement of surface topographies with transparent coatings, Opt. Lasers Eng. 121, 261–270. DOI: 10.1016/J.OPTLASENG. 2019.04.01810.1016/j.optlaseng.2019.04.018Search in Google Scholar

Fonte, M., Romeiro, F., Freitas, M., 2007. Environment effects and surface roughness on fatigue crack growth at negative R-ratios, Int. J. Fatigue 29, 1971-1977. DOI: 10.1016/J.IJFATIGUE.2007.02.02710.1016/j.ijfatigue.2007.02.027Search in Google Scholar

Goldsmith, N.T., Wanhill, R.J.H., Molent, L., 2019. Quantitative fractography of fatigue and an illustrative case study, Eng. Fail. Anal. 96, 426-435. DOI: 10.1016/J.ENGFAILANAL.2018.10.01310.1016/j.engfailanal.2018.10.013Search in Google Scholar

International Organization for Standardization, 2012. Geometrical product specifications (GPS) - Surface texture: Areal Part 2: Terms, definitions and surface texture parameters, Int. Stand. ISO. DOI: 10.1136/bmjopen-2015-00936610.1136/bmjopen-2015-009366460642826443663Search in Google Scholar

ISO 4287, 1997. Geometrical Product Specifications (GPS) -- Surface texture: Profile method -- Terms, definitions and surface texture parameters, Int. Organ. Stand. 25.Search in Google Scholar

Jamali, J., Mahmoodi, M.J., Hassanzadeh-Aghdam, M.K., Wood, J.T., 2019. A mechanistic criterion for the mixed-mode fracture of unidirectional polymer matrix composites, Compos, Part B Eng. 176, 107316. DOI: 10.1016/J.COMPOSITESB.2019.10731610.1016/j.compositesb.2019.107316Search in Google Scholar

Jollivet, T., Greenhalgh, E., 2015. Fractography, a Powerful Tool for Identifying and Understanding Fatigue in Composite Materials, Procedia Eng. 133, 171-178. DOI: 10.1016/J.PROENG.2015.12.64610.1016/j.proeng.2015.12.646Search in Google Scholar

Kaplonek, W., Nadolny, K., Królczyk, G.M., 2016. The use of focus-variation microscopy for the assessment of active surfaces of a new generation of coated abrasive tools, Meas. Sci. Rev. DOI: 10.1515/msr-2016-000710.1515/msr-2016-0007Search in Google Scholar

Kowal, M., Szala, M., 2020. Diagnosis of the microstructural and mechanical properties of over century-old steel railway bridge components, Eng. Fail. Anal. 110, 104447. DOI: 10.1016/J.ENGFAILANAL. 2020.10444710.1016/j.engfailanal.2020.104447Search in Google Scholar

Lachowicz, C. T., Owsiński, R. 2020. Comparative analysis of fatigue energy characteristics of S355J2 steel subjected to multi-axis loads, Materials, 13(11) https://doi:10.3390/ma1311247010.3390/ma13112470732129032481750Search in Google Scholar

Macek, W., 2019a. Post-failure fracture surface analysis of notched steel specimens after bending-torsion fatigue, Eng. Fail. Anal. DOI: 10.1016/j.engfailanal.2019.07.05610.1016/j.engfailanal.2019.07.056Search in Google Scholar

Macek, W., 2019b. Fractal analysis of the bending-torsion fatigue fracture of aluminium alloy, Eng. Fail. Anal. 99, 97-107. DOI: 10.1016/J.ENGFAILANAL.2019.02.00710.1016/j.engfailanal.2019.02.007Search in Google Scholar

Macek, Wojciech, Branco, R., Szala, M., Marciniak, Z., Ulewicz, R., Sczygiol, N., Kardasz, P., 2020a. Profile and Areal Surface Parameters for Fatigue Fracture Characterisation, Materials (Basel). 13, 3691. DOI: 10.3390/ma1317369110.3390/ma13173691750432832825494Search in Google Scholar

Macek, W., Branco, R., Trembacz, J., Costa, J.D., Ferreira, J.A.M., Capela, C., 2020. Effect of multiaxial bending-torsion loading on fracture surface parameters in high-strength steels processed by conventional and additive manufacturing. Eng. Fail. Anal. 118. DOI: 10.1016/j.engfailanal.2020.10478410.1016/j.engfailanal.2020.104784Search in Google Scholar

Pawliczek, R., Prażmowski, M., 2015. Study on material property changes of mild steel S355 caused by block loads with varying mean stress, Int. J. Fatigue. DOI: 10.1016/j.ijfatigue.2015.05.01910.1016/j.ijfatigue.2015.05.019Search in Google Scholar

Pejkowski, Ł., Skibicki D., Seyda J., 2018. Stress-strain response and fatigue life of a material subjected to asynchronous loadings, AIP Conference Proceedings 2028, 020016; DOI: 10.1063/1.506640610.1063/1.5066406Search in Google Scholar

Robak, G., 2020. Using a variable value of the fictitious radius to estimate fatigue life of notched elements, Fatigue and Fracture of Engineering Materials and Structures, 43(9), 2006-2023. DOI: 10.1111/ffe.1328010.1111/ffe.13280Search in Google Scholar

Rozumek, D., Marciniak, Z., Lesiuk, G., Correia, J.A., de Jesus, A.M.P., 2018. Experimental and numerical investigation of mixed mode I + II and I + III fatigue crack growth in S355J0 steel, Int. J. Fatigue 113, 160-170. DOI: 10.1016/J.IJFATIGUE.2018.04.00510.1016/j.ijfatigue.2018.04.005Search in Google Scholar

Saito, S., Ogawa, F., Itoh, T., 2020. Investigation of fatigue strength under wide-ranged biaxial stress for two types of stainless steel using a thin-walled hollow cylinder specimen, Int. J. Fatigue 105611. DOI: 10.1016/J.IJFATIGUE.2020.10561110.1016/j.ijfatigue.2020.105611Search in Google Scholar

Senin, N., Thompson, A., Leach, R.K., 2017. Characterisation of the topography of metal additive surface features with different measurement technologies, Meas. Sci. Technol. DOI: 10.1088/1361-6501/aa7ce210.1088/1361-6501/aa7ce2Search in Google Scholar

Singh, A.K., Datta, S., Chattopadhyay, A., Riddick, J.C., Hall, A.J., 2019. Fatigue crack initiation and propagation behavior in Al – 7075 alloy under in-phase bending-torsion loading, Int. J. Fatigue 126, 346–356. DOI: 10.1016/J.IJFATIGUE.2019.05.02410.1016/j.ijfatigue.2019.05.024Search in Google Scholar

Sinha, S., Nene, S.S., Frank, M., Liu, K., Lebensohn, R.A., Mishra, R.S., 2020. Deformation mechanisms and ductile fracture characteristics of a friction stir processed transformative high entropy alloy, Acta Mater. 184, 164–178. DOI: 10.1016/J.ACTAMAT.2019.11.05610.1016/j.actamat.2019.11.056Search in Google Scholar

Slámečka, K., Pokluda, J., Kianicová, M., Major, S., Dvořák, I., 2010. Quantitative fractography of fish-eye crack formation under bending-torsion fatigue, Int. J. Fatigue 32. DOI: 10.1016/j.ijfatigue.2009.07.00910.1016/j.ijfatigue.2009.07.009Search in Google Scholar

Stach, S., Sapota, W., Ţălu, Ş., Ahmadpourian, A., Luna, C., Ghobadi, N., Arman, A., Ganji, M., 2017. 3-D surface stereometry studies of sputtered TiN thin films obtained at different substrate temperatures, J. Mater. Sci. Mater. Electron. DOI: 10.1007/s10854-016-5774-910.1007/s10854-016-5774-9Search in Google Scholar

Stemp, W.J., Macdonald, D.A., Gleason, M.A., 2019. Testing imaging confocal microscopy, laser scanning confocal microscopy, and focus variation microscopy for microscale measurement of edge cross-sections and calculation of edge curvature on stone tools: Preliminary results, J. Archaeol. Sci. Reports 24, 513-525. DOI: 10.1016/J.JASREP.2019.02.01010.1016/j.jasrep.2019.02.010Search in Google Scholar

Susmel, L., Petrone, N., 2003. Multiaxial fatigue life estimations for 6082-T6 cylindrical specimens under in-phase and out-of-phase biaxial loadings, Eur. Struct. Integr. Soc. 31, 83-104. DOI: 10.1016/S1566-1369(03)80006-710.1016/S1566-1369(03)80006-7Search in Google Scholar

Szala, M., 2017. Application of computer image analysis software for determining incubation period of cavitation erosion – preliminary results, ITM Web Conf. 15 06003 DOI: 10.1051/itmconf/2017150600310.1051/itmconf/20171506003Search in Google Scholar

Trško, L., Lago, Ján, Jambor, M., Nový, F., Bokůvka, O., Florková, Z. 2020. Microstructure and residual stress analysis of Strenx 700 MC welded joint, Production Engineering Archives, 26(2), 41-44. DOI: 10.30657/pea.2020.26.0910.30657/pea.2020.26.09Search in Google Scholar

Ulewicz, R., Nový, F., Novák, P., Palček, P., 2019. The investigation of the fatigue failure of passenger carriage draw-hook, Eng. Fail. Anal. 104, 609-616. DOI: 10.1016/j.engfailanal.2019.06.03610.1016/j.engfailanal.2019.06.036Search in Google Scholar

Ulewicz, R., Szataniak, P., Novy, F. 2014. Fatigue Properties Of Wear Resistant Martensitic Steel, Metal 2014 - 23rd International Conference on Metallurgy and Materials, Conference ProceedingsSearch in Google Scholar

Vanderesse, N., Texier, D., Bocher, P., 2020. Effect of porosities on brazed martensitic steel tensile properties: 2D and 3D pre-mortem vs postmortem characterizations, Mater. Charact. 160, 110084. DOI: 10.1016/J.MATCHAR.2019.11008410.1016/j.matchar.2019.110084Search in Google Scholar

Wu, Q., Liu, X., Liang, Z. et al. 2020. Fatigue life prediction model of metallic materials considering crack propagation and closure effect, J Braz. Soc. Mech. Sci. Eng. 42, 424. DOI: 10.1007/s40430-020-02512-110.1007/s40430-020-02512-1Search in Google Scholar

Yang, D., Xiao, X., Liu, Y., & Sun, J., 2019. Peripheral milling-induced residual stress and its effect on tensile–tensile fatigue life of aeronautic titanium alloy Ti–6Al–4V, The Aeronautical Journal, 123(1260), 212-229. DOI: doi:10.1017/aer.2018.15110.1017/aer.2018.151Search in Google Scholar