Accès libre

Environmental safety aspects of using the digestate from an agricultural biogas plant

, ,  et   
24 févr. 2024
À propos de cet article

Citez
Télécharger la couverture

Al Seadi T., Lukehurst C., 2012. Quality management of digestate from biogas plants used as fertiliser. IEA bioenergy, 37, 40. Search in Google Scholar

Bachmann S., Uptmoor R. i Eichler-Löbermann B., 2016. Phosphorus distribution and availability in untreated and mechanically separated biogas digestates. Scientia Agricola, 73(1): 9-17, doi: 10.1590/0103-9016-2015-0069. Search in Google Scholar

Barłóg P., Hlisnikovský L., Kunzová E., 2020. Effect of digestate on soil organic carbon and plant-available nutrient content compared to cattle slurry and mineral fertilization. Agronomy, 10(3), 379, doi.org/10.3390/agronomy10030379. Search in Google Scholar

Bernat K., Białowiec A., Wojnowska-Baryła I., 2008. Co-fermentation of sewage sludge and waste from oil production. Archives of Environmental Protection, 37(3): 103-114. Search in Google Scholar

Commission Regulation (EU) No. 142/2011 of February 25, 2011 implementing Regulation (EC) No. 1069/2009 of the European Parliament and of the Council laying down health rules concerning animal by-products not intended for human consumption and implementing Council Directive 97/78/EC as regards certain samples and items exempt from veterinary checks at the border under that Directive. Search in Google Scholar

Congilosi J.L., Aga D.S., 2021. Review on the fate of antimicrobials, antimicrobial resistance genes, and other micropollutants in manure during enhanced anaerobic digestion and composting. Journal of Hazardous Materials, 405, 123634, doi.org/10.1016/j.jhazmat.2020.123634. Search in Google Scholar

Cukrowski A., Oniszk-Popławska A., Haładyj A., 2013. Biogazownia - przemyślany wybór. Fundacja Instytut na Rzecz Ekorozwoju, 29(3): 21-39. Search in Google Scholar

Czekała W., 2019. Processing of digested pulp from agricultural biogas plant. pp. 371-385. In: Innovative Approaches and Applications for Sustainable Rural Development; eds: A. Theodoridis, A. Ragkos, M. Salampasis, Springer. Search in Google Scholar

European Biogas Association Statistical Report: 2019 European Overview, 2020. (EBA, 2020) Brussels, Belgium: https://www.europeanbiogas.eu/eba-statistical-report-2019-european-overview/. Search in Google Scholar

Eraky M., Elsayed M., Qyyum M.A., Ai P., Tawfik A., 2022. A new cutting-edge review on the bioremediation of anaerobic digestate for environmental applications and cleaner bioenergy. Environmental Research, 213, 113708, doi.org/10.1016/j.envres.2022.113708. Search in Google Scholar

Garg R.N., Pathak H., Das D.D., Tomar R.K., 2005. Use of flyash and biogas slurry for improving wheat yield and physical properties of soil. Environmental Monitoring and Assessment, 107: 1-9, doi: 10.1007/s10661-005-2021-x. Search in Google Scholar

Gellings C.W., Parmenter K.E., 2004. Energy efficiency in fertilizer production and use. In: Efficient use and conservation of energy; eds: C.W. Gellings, K.E. Parmenter; Oxford: Eolss Publishers, 14 pp. Search in Google Scholar

Govasmark E., Stäb J., Holen B., Hoornstra D., Nesbakk T., Salkinoja-Salonend M., 2011. Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use. Waste Management, 31(12): 2577-2583. Search in Google Scholar

Gulyás M., Aleksza L., Füleky G., 2016. Anaerobic digestate as a soil amendment - results of laboratory and field experiments. In: Book of abstracts ORBIT; ed. K. Lasaridi; Herak-lion, p. 90. Search in Google Scholar

Jens J., Graf D., Schimmel M., 2021. A Gas of Climate report, 2021 - based on EBA Statistical Report. Market state and trends in renewable and low-carbon gases in Europe. Search in Google Scholar

Kalina J., Skorek J., Cebula J., Latocha L., 2003. Recovery of biogas from agricultural digestion plants and its conversion into useful energy. Gospodarka Paliwami i Energią, 12: 15-19. (in Polish) Search in Google Scholar

Koszel M., Przywara A., Kachel-Jakubowska M., Kraszkiewicz A., 2017. Evaluation of the use of biogas plant digestate as a fertilizer in field cultivation plants. IX International Scientific Symposium, Lublin, pp. 181-186. Search in Google Scholar

Kupper T., Bürgeb D., Jörg Bachmannb H., Güsewella, S., Mayerb J., 2014. Heavy metals in source-separated compost and digestates. Waste Management, 34(5): 867-874. Search in Google Scholar

Kuusik A., Pachel K., Kuusik A., Loigu E., 2017. Possible agricultural use of digestate. Proceedings of the Estonian Academy of Sciences, 66(1), 64, doi.org/10.3176/proc.2017.1.10 Search in Google Scholar

Lamolinara B., Pérez-Martínez A., Guardado-Yordi E., Guillén Fiallos C., Diéguez-Santana K., Ruiz-Mercado G. J., 2022. Anaerobic digestate management, environmental impacts, and techno-economic challenges. Waste Management, 140: 14-30, doi.org/10.1016/j.wasman.2021.12.035. Search in Google Scholar

Levén L., Nyberg K., Schnürer A., 2012. Conversion of phenols during anaerobic digestion of organic solid waste – A review of important microorganisms and impact of temperature. Journal of Environmental Management, 95, S99-S103, doi.org/10.1016/j.jenvman.2010.10.021. Search in Google Scholar

Limam I., Mezni M., Guenne A., Madigou C., Driss M. R., Bouchez T., Mazéas L., 2013. Evaluation of biodegradability of phenol and bisphenol A during mesophilic and thermophilic municipal solid waste anaerobic digestion using 13C-labeled contaminants. Chemosphere, 90(2): 512-520, doi.org/10.1016/j.chemosphere.2012.08.019. Search in Google Scholar

Liu Q., Zhao Z., Xue Z., Li D., Wen Z., Ran Y., Mei Z., He L., 2021. Comprehensive risk assessment of applying biogas slurry in peanut cultivation. Frontiers in Nutrition, 8, doi.org/10.3389/fnut.2021.702096 Search in Google Scholar

Lohri C.R., Diener S., Zabaleta I., Mertenat A., Zurbrügg C., 2017. Treatment technologies for urban solid biowaste to create value products: a review with focus on low- and middle-income settings. Reviews in Environmental Science and Bio/Technology, 16(1): 81-130. Search in Google Scholar

Makadi M., Tomocsik A., Orosz V., 2012. Digestate: A New Nutrient Source - Review. pp. 295-296. In: Biogas InTech; ed. K. Sunil. Search in Google Scholar

Möller K., Müller T., 2012. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering Life Sciences, 12(3): 242-257. Search in Google Scholar

Montusiewicz A., Lebiocka M., Pawłowska M., 2008. Characterization of the biomethanization process in selected waste mixtures. Archives of environmental protection. 34(3): 49-61. Search in Google Scholar

Montusiewicz A., Lebiocka M., Pawłowska M., 2008. Characterization of the biomethanization process in selected waste mixtures. Archives of Environmental Protection, 34(3): 49-61. Search in Google Scholar

Odlare M., Pell M., Svensson K., 2008. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Waste Management, 28(7): 1246-1253. Search in Google Scholar

Panuccio M.R., Romeo F., Mallamaci C., Muscolo A., 2021. Digestate application on two different soils: agricultural benefit and risk. Waste and Biomass Valorization, 12(8): 4341-4353, doi.org/10.1007/s12649-020-01318-5. Search in Google Scholar

Patyra E., Nebot C., Gavilán R.E., Kwiatek K., Cepeda A., 2023. Prevalence of veterinary antibiotics in natural and organic fertilizers from animal food production and assessment of their potential ecological risk. Journal of the Science of Food and Agriculture, 103(7): 3638-3644, https://doi.org/10.1002/jsfa.12435. Search in Google Scholar

Peng W., Pivato A., 2019. Sustainable management of digestate from the organic fraction of municipal solid waste and food waste under the concepts of back to earth alternatives and circular economy. Waste and Biomass Valorization, 10: 465-481. Search in Google Scholar

Piveteau P., Druilhe C., Aissani L., 2022. What on earth? The impact of digestates and composts from farm effluent management on fluxes of foodborne pathogens in agricultural lands. Science of the Total Environment, 840, 156693, https://doi.org/10.1016/J.SCITOTENV.2022.156693. Search in Google Scholar

Porterfield K.K., Hobson S.A., Neher D.A., Niles M.T., Roy E.D., 2023. Microplastics in composts, digestates, and food wastes: a review. Journal of Environmental Quality, 52: 225-240, https://doi.org/10.1002/jeq2.20450. Search in Google Scholar

Regulation (EC) No. 1069/2009 of the European Parliament and of the Council of 21 October 2009 laying down health rules concerning animal by-products not intended for human consumption and repealing Regulation (EC) No. 1774/2002 (Animal by-products Regulation). Search in Google Scholar

Reuland G., Sigurnjak I., Dekker H., Michels E., Meers E., 2021. The potential of digestate and the liquid fraction of digestate as chemical fertiliser substitutes under the RENURE criteria. Agronomy, 11(7), 1374, https://doi.org/10.3390/agronomy11071374. Search in Google Scholar

Risberg K., Cederlund H., Pell M., Arthurson V., Schnürer A., 2017. Comparative characterization of digestate versus pig slurry and cow manure – Chemical composition and effects on soil microbial activity. Waste Management, 61: 529-538, https://doi.org/10.1016/j.wasman.2016.12.016. Search in Google Scholar

Robles-Aguliar A., Temperton V.M., Jablonowki N.D., 2019. Maize silage digestate application affecting germination and early growth of maize modulated by soil type. Agronomy, 9: 8, doi: 10.3390/agronomy9080473. Search in Google Scholar

Ronewicz K., Pontus K., Hupka J., Mąkinia J., 2016. Zagospodarowanie pofermentu. pp. 58-72. In: Odpady organiczne - odnawialne źródło energii; Gdańsk. Search in Google Scholar

Slepetiene A., Jurgutis L., Volungevicius J., Liaudanskiene I., 2020. The potential of digestate as a biofertilizer in eroded soils of Lithuania. Waste Management, 102: 441-451, doi: 10.1016/j.wasman.2019.11.008. Search in Google Scholar

Smol M., Szołdrowska D., 2021. An analysis of the fertilizing potential of selected waste streams – municipal, industrial and agricultural. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 37(3): 75-100. Search in Google Scholar

Teliga C., Tremier A., Martel J.-L., 2011. Characterization of solid digestates: Part 1, Review of existing indicators to assess solid digestates agricultural use. Waste and Biomass Valorization, 2: 43-58. Search in Google Scholar

Van Midden, C., Harris J., Shaw L., Sizmur T., Pawlett M., 2023. The impact of anaerobic digestate on soil life: A review. Applied Soil Ecology, 191, 105066, https://doi.org/10.1016/j.apsoil.2023.105066. Search in Google Scholar

Wang W., Lee D.-J., 2021. Valorization of anaerobic digestion digestate: A prospect review. Bioresource Technology, 323, 124626, https://doi.org/10.1016/j.biortech.2020.124626. Search in Google Scholar

Węglarzy K., Stekla J., 2009. Agricultural biogas plants for protection of the farming environment. Wiadomości Zootechniczne, 3: 59-66. (in Polish + summary in English) Search in Google Scholar

Weithmann N., Möller J.N., Löder M.G.J., Piehl S., Laforsch C., Freitag R., 2018. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Science Advances, 4(4), https://doi.org/10.1126/sciadv.aap8060. Search in Google Scholar

Widyasari-Mehta A., Hartung S., Kreuzig R., 2016. From the application of antibiotics to antibiotic residues in liquid manures and digestates: A screening study in one European center of conventional pig husbandry. Journal of Environmental Management, 177: 129-137, https://doi.org/10.1016/j.jenvman.2016.04.012. Search in Google Scholar

Yan M., Tian H., Song S., Tan H.T.W., Lee J.T.E., Zhang J., Sharma P., Tiong Y.W., Tong Y.W., 2023. Effects of digestate-encapsulated biochar on plant growth, soil microbiome and nitrogen leaching. Journal of Environmental Management, 334, 117481, https://doi.org/10.1016/j.jenvman.2023.117481. Search in Google Scholar

Zilio M., Pigoli A., Rizzi B., Herrera A., Tambone F., Geromel G., Meers E., Schoumans O., Giordano A., Adani F., 2022. Using highly stabilized digestate and digestate-derived ammonium sulphate to replace synthetic fertilizers: The effects on soil, environment, and crop production. Science of the Total Environment, 815, 152919, https://doi.org/10.1016/j.scitotenv.2022.152919. Search in Google Scholar

Langue:
Anglais
Périodicité:
1 fois par an
Sujets de la revue:
Sciences de la vie, Sciences végétales, Écologie