Accès libre

A Critical View on the Phenol Index as a Measure of Phenol Compounds Content in Waters. Application of a Biosensor

À propos de cet article

Citez

Adamski J, Nowak P, Kochana J. Simple sensor for determination of phenol and its derivatives in water based on enzyme tyrosinase. Electrochim Acta. 2010;55:2363-2367. DOI: 10.1016/j.electacta.2009.11.099.10.1016/j.electacta.2009.11.099Search in Google Scholar

Kim K-R, Kim H. Gas chromatographic profiling and screening for phenols as isobutoxycarbonyl derivatives in aqueous samples. J Chromatogr A. 2000;866:87-96.10.1016/S0021-9673(99)01068-7Search in Google Scholar

Sousa AR, Trancoso M. Validation of an environmental friendly segmented flow method for the determination of phenol index in water as alternative to the conventional one. Talanta. 2010;79(3):796-803. DOI: 10.1016/j.talanta.2009.05.009.10.1016/j.talanta.2009.05.00919576447Search in Google Scholar

EU/4 Drinking Water Directive 80/778/EEC.Search in Google Scholar

Padilla-Sanchez JA, Plaza-Bolanos P, Romero-Gonzalez R, Barco-Bonilla N, Martinez-Vidal JL, Garrido-Frenich A. Simultaneous analysis of chlorophenols, alkylphenols, nitrophenols and cresols in wastewater effluents, using solid phase extraction and further determination by gas chromatography-tandem mass spectrometry. Talanta. 2011;85:2397-2404. DOI: 10.1016/j.Talanta.2011.07.081.10.1016/j.talanta.2011.07.08121962659Search in Google Scholar

Sanchez-Avila J, Fernandez-Sanjuan M, Vincente J, Lacorte S. Development of a multi-residue method for the determination of organic micropollutants in water, sediment and mussels using gas chromatography-tandem mass spectrometry. J Chromatogr A. 2011;1218:6799-6811. DOI: 10.1016/j.chroma.2011.07.056.10.1016/j.chroma.2011.07.05621824622Search in Google Scholar

Kovacs A, Mortl M, Kende A. Development and optimization of a method for the analysis of phenols and chlorophenols from aqueous samples by gas chromatography-mass spectrometry, after solid-phase extraction and trimethylsilylation. Microchem J. 2011;99:125-131. DOI: 10.1016/j.microc.2011.04.007.10.1016/j.microc.2011.04.007Search in Google Scholar

Alcudia-Leon MC, Lucena R, Cardenas W, Valcarcel M. Determination of phenols in waters by stir membrane liquid - liquid - liquid microextraction coupled to liquid chromatography with ultraviolet detection. J Chromatogr A. 2011;1218:2176-2181. DOI: 10.1016/j.chroma.2011.02.033.10.1016/j.chroma.2011.02.03321392772Search in Google Scholar

Tanigawa T, Watabe Y, Kubo T, Hosoya K. Determination of bisphenol a with effective pretreatment medium using automated column-switching HPLC with fluorescence detection. J Sep Sci. 2011;34:2840-2846.10.1002/jssc.20110041821837625Search in Google Scholar

Segovia-Martinez L, Moliner-Martinez Y, Campins-Falco P. Direct capillary liquid chromatography with electrochemical detection method for determination of phenols in water samples. J Chromatogr A. 2010;1217:7926-7930. DOI: 10.1016/j.chroma.2010.10.078.10.1016/j.chroma.2010.10.07821071032Search in Google Scholar

Jing T, Xia H, Niu J, Zhou Y, Dai Q, Hao Q, Zhou Y, Mei S. Determination of trace 2,4-dinitrophenol in surface water samples based on hydrophilic molecularly imprinted polymers/nickel fiber electrode. Biosens Bioelectron. 2011;26:4450-4456. DOI: 10.1016/j.bios.2011.05.00.Search in Google Scholar

Vidal L, Chisvert A, Canals A, Psillakis E, Lapkin A, Acosta F, Edler KJ, Holdaway JA, Marken F. Chemically surface-modified carbon nanoparticle carrier for phenolic pollutants: extraction and electrochemical determination of benzophenone-3 and triclosan. Anal Chim Acta. 2008;616:28-35. DOI: 10.1016/j.aca.2008.04.011.10.1016/j.aca.2008.04.01118471480Search in Google Scholar

Wu Y. Nano-TiO2/dihexadecylphosphate based electrochemical sensor for sensitive determination of pentachlorophenol. Sens Actuators B. 2009;137:180-184. DOI: 10.1016/j.snb.2008.11.005.10.1016/j.snb.2008.11.005Search in Google Scholar

International Organization of Standardization: Water quality. Determination of phenol index. 4-Aminoantipyrine spectrometric methods after distillation. 1990:6439.Search in Google Scholar

Moskvin AL, Mozzhukhin A, Mukhina EA, Moskvin LN. Flow-injection photometric determination of the phenol index of natural waters in the presence of humic acids. J Anal Chem. 2005;60(1):79-84.10.1007/s10809-005-0059-0Search in Google Scholar

Maya F, Estela JM, Cerda V. Flow analysis techniques as an effective tools for the improved environmental analysis of organic compounds expressed as total indices. Talanta. 2010;81(1-2):1-8. DOI: 10.1016/j.talanta.2010.01.028.10.1016/j.talanta.2010.01.02820188878Search in Google Scholar

Arecchi A, Scampicchio M, Drusch S, Mannino S. Nanofibrous membrane based tyrosinase-biosensor for the detection of phenolic compounds. Anal Chim Acta. 2010;659(1-2):133-136. DOI: 10.1016/j.aca.2009.11.039.10.1016/j.aca.2009.11.03920103115Search in Google Scholar

Zhang Y, Ji C. Electro-induced covalent cross-linking of chitosan and formation of chitosan hydrogel films: Its application as an enzyme immobilization matrix for use in a phenol sensor. Anal Chem. 2010;82(12):5275-5281. DOI: 10.1021/ac100714s.10.1021/ac100714s20496867Search in Google Scholar

Chen J, Jin Y. Sensitive phenol determination based on co-modifying tyrosinase and palygorskite on glassy carbon electrode. Microchim Acta. 2010;169(3-4):249-254. DOI: 10.1007/s00604-010-0320-6.10.1007/s00604-010-0320-6Search in Google Scholar

Lu L, Zhang L, Zhang X, Huan S. A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds. Anal Chim Acta. 2010;665(2):146-151. DOI:10.1016/j.aca.2010.03.033.10.1016/j.aca.2010.03.03320417324Search in Google Scholar

Zhang J, Lei J, Liu Y, Zhao J. Highly sensitive amperometric biosensors for phenols based on polyaniline-ionic liquid-carbon nanofiber composite. Biosens Bioelectron. 2009;24(7):1858-1863. DOI: 10.1016/j.bios.2008.09.012.10.1016/j.bios.2008.09.01218976900Search in Google Scholar

Kochana J, Gala A, Parczewski A, Adamski J. Titania sol-gel-derived tyrosinase-based amperometric biosensor for determination of phenolic compounds in water samples. Examination of interference effects. Anal Bioanal Chem. 2008;391(4):1275-1281. DOI: 10.1007/s00216-007-1798-6.10.1007/s00216-007-1798-618188544Search in Google Scholar

Bayne ChK, Rubin IB. Practical experimental designs and optimization methods for chemists. Weinheim: VCH Publishers; 1986.Search in Google Scholar

Parczewski A. Chemometric aspects of environmental analytics. Proc Summer School organized by CEEAM. Gdańsk, Poland; 2005.Search in Google Scholar

Otto M. Chemometrics. Statistics and computer application in analytical chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA; 2007.Search in Google Scholar

Kochana J, Nowak P, Jarosz-Wilkołazka A, Biedroń M. Tyrosinase/laccase bienzyme biosensor for amperometric determination of phenolic compounds. Microchem J. 2008;89(2):171-184. DOI: 10.1016/j.microc.2008.02.004.10.1016/j.microc.2008.02.004Search in Google Scholar

Ettinger MB, Ruchhoft CC, Lishka R. Sensitive 4-aminoantipyrine method for phenolic compounds. Anal Chem. 1951;23(12):1783-1788.10.1021/ac60060a019Search in Google Scholar