Accès libre

Oxidative Damage to Proteins and Lipids During Ageing

À propos de cet article

Citez

Judge S, Leeuwenburgh C. Cardiac mitochondrial bioenergetics, oxidative stress, and aging. Am J Physiol Cell Physiol. 2007; 292(6): C1983-9210.1152/ajpcell.00285.200617344313Search in Google Scholar

Harman D. Aging: a theory based on free radicals and radiation chemistry. J Gerontol. 1956; 2: 298-30010.1093/geronj/11.3.29813332224Search in Google Scholar

Dufour E, Larsson NG. Understanding aging: revealing order out of chaos. Biochim Biophys Acta. 2004; 1658(1-2): 122-3210.1016/j.bbabio.2004.04.02015282183Search in Google Scholar

Osiewacz HD. Role of mitochondria in ageing and age-related disease. Exp Gerontol. 2010; 45(7-8): 46510.1016/j.exger.2010.05.00120451599Search in Google Scholar

Cocco T, Sgobbo P, Clemente M, Lopriore B, Grattagliano I, Di Paola M, Villani G. Tissue-specific changes of mitochondrials functions in aged rats: effect of a long- term dietary treatment with N-acetylcysteine. Free Radic Biol Med. 2005; 38(6): 796-80510.1016/j.freeradbiomed.2004.11.03415721990Search in Google Scholar

Kaplán P. Kardiovaskulárne ochorenia a voľné radikály. P+M Turany, 2010; 120 s.Search in Google Scholar

Stadtman ER. Protein oxidation and aging. Free Radical Research. 2006; 40(12): 1250-810.1080/1071576060091814217090414Search in Google Scholar

Catalá A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenas and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids. 2009; 157(1): 1-1110.1016/j.chemphyslip.2008.09.00418977338Search in Google Scholar

Halliwell B, Gutteridge JMC. Free radicals in biology and medicine: Antioxidant defences. 3rd ed. New York: Oxford Univ Press; 1999. Halliwell B, Gutteridge JMC eds.Search in Google Scholar

Sivoňová M, Tatarková Z, Ďuračková Z, Dobrota D, Lehotský J, Matáková T, Kaplán P. Relationship between antioxidant potential and oxidative damage to lipids, proteins and DNA in aged rats. Physiol. Res. 2007; 56(6): 757-64Search in Google Scholar

Ďuračková Z. Some current insights into oxidative stress. Physiol Res. 2010; 59(4): 459-6910.33549/physiolres.93184419929132Search in Google Scholar

Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972; 20(4): 145-710.1111/j.1532-5415.1972.tb00787.x5016631Search in Google Scholar

Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta. 2006; 1757(5-6): 509-1710.1016/j.bbabio.2006.04.02916829228Search in Google Scholar

Romano AD, Serviddio G, de Matthaeis A, Bellanti F, Vendemiale G. Oxidative stress and aging. Nephrol. 2010; 23(Suppl. 15): S29-36Search in Google Scholar

Gao L, Laude K, Cai H. Mitochondrial patophysiology, reactive oxygen species, and cardiovascular diseases. Vet Clin North Am Small Anim Pract. 2008; 38(1): 137-5510.1016/j.cvsm.2007.10.004270004118249246Search in Google Scholar

Trifunovic A, Larsson NG. Mitochondrial disfunction as a cause of ageing. J Intern Med. 2008; 263(2):167-7810.1111/j.1365-2796.2007.01905.x18226094Search in Google Scholar

Esterhazy D, King MS, Yakovlev G, Hirst J. Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria. Biochemistry. 2008; 47(12): 3964-7110.1021/bi702243b18307315Search in Google Scholar

Zhang HM, Zhang Y, Zhang BX. The role of mitochondrial complex III in melatonin-induced ROS production in cultured mesangial cells. J Pineal Res. 2011; 50(1): 78-82.10.1111/j.1600-079X.2010.00815.x300580920969621Search in Google Scholar

Strkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF. Mitochondrial alphaketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci. 2004; 24(36): 7779-8810.1523/JNEUROSCI.1899-04.2004672993215356189Search in Google Scholar

Wang W, Fang H, Groom L, Cheng A, Zhang W, Liu J, Wang X, Li K, Han P, Zheng M, Yin J, Mattson MP, Kao JP, Lakatta EG, Sheu SS, Ouyang K, Chen J, Dirksen RT, Cheng H. Superoxide flashes in single mitochondria. Cell. 2008; 134(2): 279-9010.1016/j.cell.2008.06.017254799618662543Search in Google Scholar

Babušíková E, Jesenák M, Račay P, Dobrota D, Kaplán P. Oxidative alternations in rat heart homogenate and mitochondria during ageing. Gen Physiol Biophys. 2008; 27(2): 115-20Search in Google Scholar

Kaplán P, Tatarková Z, Račay P, Lehotský J, Pavlíková M, Dobrota D. Oxidative modifications of cardiac mitochondria and inhibition of cytochrome c oxidase activity by 4-hydroxynonenal. Redox Rep. 2007; 12(5): 211-810.1179/135100007X20030817925093Search in Google Scholar

Long J, Wang X, Gao H, Liu Z, Liu C, Miao M, Liu J. Malonaldehyde acts as a mitochondrial toxin: Inhibitory effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Life Sci. 2006; 79(15): 1466-710.1016/j.lfs.2006.04.02416737718Search in Google Scholar

Kumaran S, Subathra M, Balu M, Panneerselvam C. Age-associated decreased activities of mitochondrial electron transport chain complexes in heart and skeletal muscle: role of L-carnitine. Chem Biol Interact. 2004; 148(1-2): 11-810.1016/j.cbi.2003.10.01015223352Search in Google Scholar

Tatarková Z, Kuka S, Račay P, Lehotský J, Dobrota D, Mištuna D, Kaplán P. Effects of aging on activities of mitochondrial electron transport chain complexes and oxidative damage in rat heart. Physiol Res. 2011; 60(2): 281-910.33549/physiolres.93201921114360Search in Google Scholar

Davies SM, Poljak A, Duncan MW, Smythe GA, Murphy MP. Measurements of protein carbonyls, orthoand meta-tyrosine and oxidative phosphorylation complex activity in mitochondria from young and old rats. Free Radic Biol Med. 2001; 31(2): 181-9010.1016/S0891-5849(01)00576-7Search in Google Scholar

Preston CC, Oberlin AS, Holmuhamedov EL, Gupta A, Sagar S, Syed RH, Siddiqui SA, Raghavakaimal S, Terzic A, Jahangir A. Aging-induced alterations in gene transcripts and functional activity of mitochondrial oxidative phosphorylation complexes in the heart. Mech Ageing Dev. 2008; 129(6): 304-1210.1016/j.mad.2008.02.010246477418400259Search in Google Scholar

Choksi KB, Papaconstantinou J. Age-related alterations in oxidatively damaged proteins of mouse heart mitochondrial electron transport chain complexes. Free Radic Biol Med. 2008; 44(10): 1795-80510.1016/j.freeradbiomed.2008.01.032242346818331850Search in Google Scholar

Petrosillo G, Matera M, Moro N, Ruggerio FM, Paradies G. Mitochondrial complex I dysfunction in rat heart with aging: critical role of reactive oxygen species and cardiolipin. Free Radic Biol Med. 2009; 46(1): 88-9410.1016/j.freeradbiomed.2008.09.03118973802Search in Google Scholar

Gómez LA, Monette JS, Chavez JD, Maier CS, Hagen TM. Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart. Arch Biochem Biophys. 2009; 490: 30-3510.1016/j.abb.2009.08.002276226819679098Search in Google Scholar

Stadtman ER. Role of oxidant species in aging. Curr Med Chem. 2004; 11(9): 1105-1210.2174/092986704336534115134509Search in Google Scholar

Lee S, Park Y, Zuidema MY, Hannink M, Zhang C. Effects of interventions on oxidative stress and inflammation of cardiovascular diseases. World J Cardiol. 2011; 3(1): 18-2410.4330/wjc.v3.i1.18303073321286214Search in Google Scholar

Singh M, Nam DT, Arsenault M, Ramassamy C. Role of by-products of lipid oxidation in Alzheimer's disease brain: a focus on acrolein. J Alzheimers Dis. 2010; 21(3): 741-5610.3233/JAD-2010-10040520634576Search in Google Scholar

Fernández-Checa JC, Fernández A, Morales A, Marí M, García-Ruiz C, Colell A. Oxidative stress and altered mitochondrial function in neurodegenerative diseases: lessons from mouse models. CNS Neurol Disord Drug Targets. 2010; 9(4): 439-5410.2174/18715271079155611320522012Search in Google Scholar

Palardó FV, Lloret A, Lebel M, d Ischia M, Cogger VC, Le Couteur DG, Gadaleta MN, Castello G, Pagano G. Mitochondrial dysfunction in some oxidative stress-related genetic diseases: Ataxia-Telangiectasia, Down Syndrome, Fanconi Anaemia and Werner Syndrome. Biogerontology. 2010; 11(4): 401-1910.1007/s10522-010-9269-420237955Search in Google Scholar

Shoham A, Hadziahmetovic M, Dunaief JL, Mydlarski MB, Schipper HM. Oxidative stress in diseases of human cornea. Free Radic Biol Med. 2008; 45(8): 1047-5510.1016/j.freeradbiomed.2008.07.02118718524Search in Google Scholar

Moustafa AH, Ali M, Mohamed TM, Abdou HI. Oxidative stress and thyroid hormones in patients with liver diseases. Eur J Intern Med. 2009; 20(7): 703-810.1016/j.ejim.2009.08.00319818291Search in Google Scholar

Giustarini D, Dalle-Donne I, Tsikas D, Rossi R. Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Crit Rev Clin Lab Sci. 2009; 46(5-6): 241-8110.3109/1040836090314232619958214Search in Google Scholar

Ciechanover A. The ubiquitin proteolytic system: from an idea to the patient bed. Proc Am Thorac Soc. 2006; 3(1): 21-3110.1513/pats.200510-106JH16493148Search in Google Scholar

Farout L, Friguet B. Proteasome Function in Aging and Oxidative Stress: Implications in Protein Maintenance Failure. Antioxid Redox Signal. 2006; 8(1-2): 205-1610.1089/ars.2006.8.20516487054Search in Google Scholar

Jung T, Bader N, Grune T. Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci. 2007; 1119: 97-11110.1196/annals.1404.00818056959Search in Google Scholar

Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010; 65(9): 963-7510.1093/gerona/glq074292058220478906Search in Google Scholar

Savitha S, Panneerselvam C. Mitochondrial membrane damage during aging process in rat heart: potential efficacy of L-carnitine and DL alpha lipoic acid. Mech. Ageing Dev. 2006; 27(4): 349-5510.1016/j.mad.2005.12.00416430943Search in Google Scholar

Savitha S, Panneerselvam C. Mitigation of age-dependent oxidative damage to DNA in rat heart by carnitine and lipoic acid. Mech Ageing Dev. 2007; 128(2): 206-1210.1016/j.mad.2006.11.02917196633Search in Google Scholar

Tamilselvan J, Jayaraman G, Sivarajan K, Panneerselvam C. Age-dependent upregulation of p53 and cytochrome c release and susceptibility to apoptosis in skeletal muscle fiber of aged rats: role of carnitine and lipoic acid. Free Radic Biol Med. 2007; 43(12): 1656-6910.1016/j.freeradbiomed.2007.08.02818037131Search in Google Scholar

Sudheesh NP, Ajith TA, Janardhanan KK, Krishnan CV. Palladium alpha-lipoic acid complex formulation enhances activities of Krebs cycle dehydrogenases and respiratory complexes I-IV in the heart of aged rats. Food Chem Toxicol. 2009; 47(8): 2124-810.1016/j.fct.2009.05.03219500641Search in Google Scholar

Salmon AB, Richardson A, Pérez VI. Update on the oxidative stress theory of aging: Does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med. 2010; 48(5): 642-5510.1016/j.freeradbiomed.2009.12.015281959520036736Search in Google Scholar

Judge S, Jang YM, Smith A, Selman C, Phillips T, Speakman JR, Hagen T, Leeuwenburgh C. Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the rat heart. Am J Physiol Regul Integr Comp Physiol. 2005; 289(6): R1564-7210.1152/ajpregu.00396.200516051717Search in Google Scholar

Navarro A, Gomez C, López-Cepero JM, Boveris A. Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol. 2004; 286(3): R505-1110.1152/ajpregu.00208.200314615275Search in Google Scholar

Ascensão A, Ferreira R, Magalhães J. Exercise-induced cardioprotection - biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. Int J Cardiol. 2007; 117(1): 16-3010.1016/j.ijcard.2006.04.07616860886Search in Google Scholar

Sinclair DA. Toward a theory of caloric restriction and longevity regulation. Mech Ageing Dev. 2005; 126: 987-100210.1016/j.mad.2005.03.01915893363Search in Google Scholar

Li Y, Daniel M, Tollefsbol T. Epigenetic regulation of caloric restriction in aging. BMC Med. 2011; 9(1): 98 [Epub ahead of print]10.1186/1741-7015-9-98317517421867551Search in Google Scholar

Wakeling LA, Ions LJ, Ford D. Could Sirt1-mediated epigenetic effects contribute to the longevity response to dietary restriction and be mimicked by other dietary interventions? Age (Dordr). 2009; 31(4):327-4110.1007/s11357-009-9104-5281304719568959Search in Google Scholar

ISSN:
1335-8421
Langue:
Anglais
Périodicité:
3 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, Internal Medicine, Cardiology