À propos de cet article

IIJIMA, S.: Helical Microtubules of Graphitic Carbon, Nature 354 (1991), 56-58.10.1038/354056a0Search in Google Scholar

SAITO, R.—DRESSELHAUS, G.—DRESSELHAUS, M. S.: Physical Properties of Carbon Nanotubes, Imperial College press, London.Search in Google Scholar

ZENG, H.—ZHU, L.—HAO, G.—SHENG, R.: Synthesis of Various Forms of Carbon Nanotubes by AC Arc Discharge, Carbon 36 No. 3 (1998), 259-261.10.1016/S0008-6223(97)00167-XSearch in Google Scholar

GUO, T.—NIKOLAEV, P.—THESS, A.—COLBERT, D. T.—SMALLEY, R. E.: Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization, Chem Phys Lett 243 (1995), 49-54.10.1016/0009-2614(95)00825-OSearch in Google Scholar

PRADHAN, D.—SHARON, M.: Carbon Nanotubes, Nanofilaments and Nanobeads by Thermal Chemical Vapor Deposition Process, Mat Sci Eng B 96 No. 1 (2002), 24-28.10.1016/S0921-5107(02)00309-4Search in Google Scholar

LIN, C.-L.—CHEN, C.-F.—SHI, S.-C.: Field Emission Properties of Aligned Carbon Nanotubes Grown on Stainless Steel using CH4/CO2 Reactant Gas, Diamond Relat Mater 13 No. 4-8 (2004), 1026-1031.10.1016/j.diamond.2003.10.056Search in Google Scholar

YUAN, L.—SAITO, K.—HU, W.—CHEN, Z.: Ethylene Flame Synthesis of Well-Aligned Multi-Walled Carbon Nanotubes, Chem Phys Lett 346 No. 1-2 (2001), 23-28.10.1016/S0009-2614(01)00959-9Search in Google Scholar

RANDALL, L.—WAL, V.—HALL, L. J.: Carbon Nanotube Synthesis Upon Stainless Steel Meshes, Carbon 41 No. 4 (2003), 659-672.Search in Google Scholar

NOURY, O.—STÖCKLI, T.—CROCI, M.—CHÂTELAIN, A.—BONARD, J. M.: Growth of Carbon Nanotubes on Cylindrical Wires by Thermal Chemical Vapor Deposition, Chem Phys Lett 346 No. 5-6 (2001), 349-355.10.1016/S0009-2614(01)00976-9Search in Google Scholar

DU, C.—PAN, N.: CVD Growth of Carbon Nanotubes Directly on Nickel Substrate, Mat Lett 59 No. 13 (2005), 1678-1682.10.1016/j.matlet.2005.01.043Search in Google Scholar

KOWALSKA, E.—CZERWOSZ, E.—DLUZEWSKI, P. A.—KOZLOWSKI, M.—RADOMSKA, J.: Electron Emissive Properties of CNT Films Grown by Catalytic Method on Different Types of Substrates, Diamond Relat Mater 13 No. 4-8 (2004), 1008-1101.10.1016/j.diamond.2004.01.004Search in Google Scholar

YUAN, L.—LI, T.—SAITO, K.: Growth Mechanism of Carbon Nanotubes in Methane Diffusion Flames, Carbon 41 No. 10 (2003), 1889-1896.10.1016/S0008-6223(03)00204-5Search in Google Scholar

DEEPAK, F. L.—JOHN, N. S.—GOVINDARAJ, A.—KULKARNI, G. U.—RAO, C. N. R.: Nature and Electronic Properties of Y-Junctions in CNTs and N-Doped CNTs Obtained by the Pyrolysis of Organometallic Precursors, Chem Phys Lett 411 No. 4-6 (2005), 468-473.10.1016/j.cplett.2005.06.076Search in Google Scholar

PAN, C.—LIU, Y.—CAO, F.—WANG, J.—REN, Y.: Synthesis and Growth Mechanism of Carbon Nanotubes and Nanofibers from Ethanol Flames, Micron 35 No. 6 (2004), 461-468.10.1016/j.micron.2004.01.009Search in Google Scholar

PARK, D.—KIM, Y. H.—LEE, J. K.: Synthesis of Carbon Nanotubes on Metallic Substrates by a Sequential Combination of PECVD and Thermal CVD, Carbon 41 No. 5 (2003), 1025-1029.10.1016/S0008-6223(02)00432-3Search in Google Scholar

BONARD, J. M.—STÖCKLI, T.—NOURY, O.—CHÂTELAIN, A.: Field Emission from Cylindrical Carbon Nanotube Cathodes: Possibilities for Luminescent Tubes, Appl Phys Lett 78 No. 18 (2001), 2775-2777.10.1063/1.1367903Search in Google Scholar

JANÍK, J.—DANIŠ, T.—REDHAMMER, R.—ŠATKA, A.—ČAPLOVIČOVÁ, M.: Morphology and Electron Field Emission from Carbon Nanotubes Prepared by Alcohol Catalytic Chemical Vapour Deposition, Acta Phys Slov 54 No. 3 (2004), 285-289.Search in Google Scholar

CAPLOVICOVA, M.—DANIS, T.—BUC, D.—CAPLOVIC, L.—JANIK, J—BELLO, I.: An Alternative Approach to Carbon Nanotube Sample Preparation for TEM Investigation, Ultramicroscopy 107 No. 8 (2007), 692-697.10.1016/j.ultramic.2007.01.00517337325Search in Google Scholar

ZHOU, D.—CHOW, L.: Complex Structure of Carbon Nanotubes and their Implications for Formation Mechanism, J Appl Phys 93 No. 12 (2003), 9972-9976.10.1063/1.1573733Search in Google Scholar

LU, Y.—ZHU, Z.—SU, D.—WANG, D.—LIU, Z.—SCHLÖGL, R.: Formation of Bamboo-Shape Carbon Nanotubes by Controlled Rapid Decomposition of Picric Acid, Carbon 42 (2004), 3199-3207.10.1016/j.carbon.2004.08.003Search in Google Scholar

ERMAKOVA, M. A.—ERMAKOV, D. Y.—CHUVILIN, A. L.—KUVSHINOV, G. G.: Decomposition of Methane over Iron Catalysts at the Range of Moderate Temperatures: The Influence of Structure of the Catalytic Systems and the Reaction Conditions on the Yield of Carbon and Morphology of Carbon Filaments, Journal of Catalysis 201 (2001), 183-197.10.1006/jcat.2001.3243Search in Google Scholar

GOLBERG, D.—MITOME, M.—MÜLLER, C.—TANG, C.—LEONHARDT, A.—BANDO, Y.: Atomic Structures of Iron- Based Single-Crystalline Nanowires Crystallized Inside Multi-Walled Carbon Nanotubes as Revealed by Analytical Electron Microscopy, Acta Materialia 54 No. 9 (2006), 2567-2576.10.1016/j.actamat.2006.01.040Search in Google Scholar

KIM, H.—SIGMUND, W.: Iron Nanoparticles in Carbon Nanotubes at Various Temperatures, Journal of Crystal Growth 276 (2005), 594-605.10.1016/j.jcrysgro.2004.11.393Search in Google Scholar

FENG, S. Q.—YU, D. P.—ZHANG, H. Z.—BAI, Z. G.—DING, Y.: The Growth Mechanism of Silicon Nanowires and their Quantum Confinement Effect, Journal of Crystal Growth 209 (2000), 513-517.10.1016/S0022-0248(99)00608-9Search in Google Scholar

TAKENAKA, S.—SERIZAWA, M.—OTSUKA, K.: Formation of Filamentous Carbons over Supported Fe Catalysts through Methane Decomposition, Journal of Catalysis 222 (2004), 520-531.10.1016/j.jcat.2003.11.017Search in Google Scholar

ISSN:
1335-3632
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other