Accès libre

Urban Compression Patterns: Fractals and Non-Euclidean Geometries - Inventory and Prospect

À propos de cet article

Citez

Arlinghaus S., 1985. Fractals take a central place. Geografiska Annaler, Journal of the Stockholm School of Economics, 67B: 83-88.10.1080/04353684.1985.11879517Search in Google Scholar

Arlinghaus S., 2010. Fractals take a non-Euclidean place. Solstice: An Electronic Journal of Geography and Mathematics, XXI, 1. Institute of Mathematical Geography, Ann Arbor, http://www.imagenet.org/. http://www.imagenet.org/Search in Google Scholar

Arlinghaus S. & Arlinghaus W., 1989. The fractal theory of central place hierarchies: A Diophantine analysis of fractal generators for arbitrary Löschian numbers. Geographical Analysis: An International Journal of Theoretical Geography, 21(2): 103-121.10.1111/j.1538-4632.1989.tb00882.xSearch in Google Scholar

Arlinghaus S., Arlinghaus W. & Harary F., 1993. Sum graphs and geographic information. Solstice: An Electronic Journal of Geography and Mathematics, IV, 1. Institute of Mathematical Geography, Ann Arbor, http://www-personal.umich.edu/~copyrght/image/solstice/sols193.html. http://www-personal.umich.edu/~copyrght/image/solstice/sols193.htmlSearch in Google Scholar

Arlinghaus S. & Batty M., 2006. Zipf's hyperboloid? Solstice: An Electronic Journal of Geography and Mathematics, XVII, 1. Institute of Mathematical Geography, Ann Arbor, http://www.imagenet.org/. http://www.imagenet.org/Search in Google Scholar

Arlinghaus S. & Batty M., 2010. Zipf's hyperboloid revisited: Compression and navigation - canonical form. Solstice: An Electronic Journal of Geography and Mathematics, XXI, 1. Institute of Mathematical Geography, Ann Arbor, http://www.imagenet.org/. http://www.imagenet.org/Search in Google Scholar

Arlinghaus S. & Nystuen J., 1990. Geometry of boundary exchanges: Compression patterns for boundary dwellers. Geographical Review, 80(1): 21-31.10.2307/215895Search in Google Scholar

Arlinghaus S. & Nystuen J., 1991. Street geometry and flows. Geographical Review, 81(2): 206-214.10.2307/215984Search in Google Scholar

Batty M. homepage: http://www.casa.ucl.ac.uk/people/MikesPage.htmSearch in Google Scholar

Batty M. & Longley P., references listing: http://www.casa.ucl.ac.uk/people/MikesPage.htmSearch in Google Scholar

Benguigui L. & Daoud M., 1991 Is the suburban railway system a fractal? Geographical Analysis, 23: 362-368.10.1111/j.1538-4632.1991.tb00245.xSearch in Google Scholar

Elert G., 1995-2007. About dimension. The chaos hypertextbookhttp://hypertextbook.com/chaos/33.shtmlSearch in Google Scholar

Griffith D., Vojnovic I. & Messina J., 2010. Distances in residential space: Implications from estimated metric functions for minimum path distances. Paper to be submitted to Journal of Transport Geography.Search in Google Scholar

Hausdorff& Besicovitch, historical reference: http://en.wikipedia.org/wiki/HausdorffdimensionSearch in Google Scholar

Mandelbrot B., 1982. The fractal geometry of nature. W.H. Freeman, New York.Search in Google Scholar

Ord J., 1975. Estimation methods for models of spatial interaction. Journal of the American Statistical Association, 70: 120-126.10.1080/01621459.1975.10480272Search in Google Scholar

Rodin V. & Rodina E., 2000. The fractal dimension of Tokyo's streets. Fractals, 8: 413-418.10.1142/S0218348X00000457Search in Google Scholar

Shen G., 1997. A fractal dimension analysis of urban transportation networks. Geographical & Environmental Modelling, 1: 221-236.Search in Google Scholar

Wikipedia, Fibonacci coding: http://en.wikipedia.org/wiki/Fibonacci_codingSearch in Google Scholar

ISSN:
0137-477X
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Geosciences, Geography