Accès libre

Biophotonic technologies for non-invasive assessment of skin condition and blood microcirculation

   | 23 nov. 2012
À propos de cet article

1. A European strategy for Key Enabling Technologies - a bridge to growth and jobs: http://ec.europa.eu/enterprise/sectors/ict/key_technologies/index_en.htm.Search in Google Scholar

2. http://www.medterms.com/script/main/art.asp?articlekey=3278.Search in Google Scholar

3. Ugnell, H., & Öberg, P.Å. (1995). Time variable photoplethysmography signal: its dependence on light wavelength and sample volume. Proc. SPIE, 2331, 89-97.10.1117/12.201233Search in Google Scholar

4. Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas., 28, R1-R39.10.1088/0967-3334/28/3/R0117322588Search in Google Scholar

5. Boulnois, J. (1986). Photophysical processes in recent medical laser developments, Las. Med. Sci., (1), 47-66.Search in Google Scholar

6. Anderson, R., & Parrish, J. (1981). The optics of human skin. J. Invest. Derm., 77, 13-18.10.1111/1523-1747.ep124791917252245Search in Google Scholar

7. Wagnieres, G., Star, W., & Wilson, B. (1998). In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem. Photobiol., 68(5), 603-632.982569210.1111/j.1751-1097.1998.tb02521.xSearch in Google Scholar

8. Stratonnikov, A.A., Polikarpov, V.S., & Loschenov, V.B. (2001). Photobleaching of endogenous fluorochroms in tissues in vivo during laser irradiation. Proc. SPIE, 4241, 13-24.10.1117/12.431555Search in Google Scholar

9. Lihachev, A. (2011). Kinetics of laser excited in-vivo skin autofluorescence andremission. PhD Thesis, Riga: University of Latvia.Search in Google Scholar

10. Lesinsh, J., Lihachev, A., Rudys, R., Bagdonas, S., & Spigulis, J. (2011). Skin autofluorescence photobleaching and photo-memory. Proc. SPIE, 8092, 80920N.Search in Google Scholar

11. Lihachev, A., & Spigulis, J. (2007). Skin autofluorescence fading at 405/532 nm laser excitation. IEEE Xplore, 10.1109/NO, 63-65.Search in Google Scholar

12. Spigulis, J., Lihachev, A., Gailite, L., & Erts, R. (2008). Novel laser technologies for human skin in-vivo assessment. Proc. SPIE, 7022, 70220N.Search in Google Scholar

13. Spigulis, J., Lihachev, A., & Erts, R. (2009). Imaging of laser-excited tissue autofluorescence bleaching rates. Appl. Opt., 48(10), D163-D168.10.1364/AO.48.00D163Open DOISearch in Google Scholar

14. Jakovels, D., & Spigulis, J. (2010). RGB imaging of laser-excited skin autofluorescence bleaching rates. Proc. SPIE, 7376, 737618.10.1117/12.871452Search in Google Scholar

15. Lihachev, A., Lesins, J., Jakovels, D., & Spigulis, J. (2010). Low power CW-laser signatures on human skin. Quant.Electron., 40(12), 1077-1080.10.1070/QE2010v040n12ABEH014470Search in Google Scholar

16. Ferulova I., Lesins, J., Lihachev, A., Jakovels, D., & Spigulis, J. (2012). Influence of low power CW laser irradiation on skin hemoglobin changes. Proc. SPIE, 8427, 84273I.10.1117/12.922601Search in Google Scholar

17. Lihachev, A., Rozniece, K., Lesins, J., & Spigulis, J. (2011). Photobleaching measurements of pigmented and vascular skin lesions: results of a clinical trial. Proc.SPIE, 8087, 80872F.10.1117/12.889987Search in Google Scholar

18. Ferulova, I., Rieba, A., Lesins, J., Berzina, A., Lihachev, A., & Spigulis, J. (2012). Portable device for skin autofluorescence photobleaching measurements. Lith. J. Phys., 52(1), 55-58.10.3952/lithjphys.52106Open DOISearch in Google Scholar

19. Jakovels, D., & Spigulis, J. (2010). 2-D mapping of skin chromophores in the spectral range 500-700 nm. J. Biophoton., 3(3), 125-129.10.1002/jbio.20091006919894217Search in Google Scholar

20. Kuzmina, I., Diebele, I., Valeine, L., Jakovels, D., Kempele, A., Kapostinsh, J., & Spigulis, J. (2011). Multi-spectral imaging analysis of pigmented and vascular skin lesions: results of a clinical trial. Proc. SPIE, 7883, 788312.10.1117/12.887207Search in Google Scholar

21. Jakovels, D., Spigulis J., & Saknite, I. (2010). Multi-spectral mapping of in-vivo skin haemoglobin and melanin. Proc. SPIE, 7715, 77152Z1-4.Search in Google Scholar

22. Kuzmina, I., Asare, L., Diebele, I., Jakovels, D., Kempele, A. & Spigulis, J. (2010). Multispectral imaging of pigmented and vascular cutaneous malformations: the influence of laser treatment. Proc. SPIE, 7376, 73760J.10.1117/12.873701Search in Google Scholar

23. Saknite, I., Jakovels, D. & Spigulis, J. (2011). Distant determination of bilirubin distribution in skin by multi-spectral imaging. Latv.J.Phys.Tech.Sci., 48 (2), 50-55.10.2478/v10047-011-0015-8Search in Google Scholar

24. Diebele, I., Bekina, A., Derjabo, A., Kapostinsh, J., Kuzmina, I. & Spigulis, J. (2012). Analysis of skin basalioma and melanoma by multispectral imaging. Proc. SPIE 8427, 842732.10.1117/12.922301Search in Google Scholar

25. Kuzmina, I., Diebele, I., Spigulis, J., Valeine, L., Kempele, A. & Abelite, A. (2011). Contact and contactless diffuse reflectance spectroscopy: potential for recovery monitoring of vascular lesions after intense pulsed light treatment. J. Biomed. Opt., 16 (4), 040505.10.1117/1.35691192152906621529066Open DOISearch in Google Scholar

26. Kuzmina, I., Diebele, I., Jakovels, D., Spigulis, J., Valeine, L. & Kapostinsh, J. (2011). Towards noncontact skin melanoma selection by multispectral imaging analysis, J.Biomed. Opt., 16 (6), 060502.10.1117/1.358484621721796Open DOISearch in Google Scholar

27. Kuzmina, I. (2011). Contact and contactless diffuse reflectance spectrometry forassessment of skin pathologies. PhD Thesis, Riga: University of Latvia.Search in Google Scholar

28. Diebele, I., Kuzmina, I., Kapostinsh, J., Derjabo, A. & Spigulis, J. (2011). Melanomanevus differentiation by multispectral imaging. Proc. SPIE, 8087, 80872G.Search in Google Scholar

29. Diebele, I., Kuzmina, I., Lihachev, A., Spigulis, J., Kapostinsh, J., Derjabo, A. & Valeine, L. (2012). Clinical evaluation of melanomas and common nevi by spectral imaging. Biomed.Opt.Express, 3 (3), 467-472.2243509510.1364/BOE.3.000467329653522435095Search in Google Scholar

30. Jakovels, D., Spigulis, J. & Rogule, L. (2011). RGB mapping of hemoglobin distribution in skin. Proc. SPIE, 8087, 80872B.Search in Google Scholar

31. Jakovels, D., Spigulis, J. (2011). RGB imaging system for mapping and monitoring of hemoglobin distribution in skin. Proc. SPIE, 8158, 8158OR.10.1117/12.893789Search in Google Scholar

32. Jakovels, D., Spigulis, J. (2012). RGB imaging device for mapping and monitoring of hemoglobin distribution in skin. Lith. J.Phys., 52 (1), 50-54.10.3952/lithjphys.52108Open DOISearch in Google Scholar

33. Jakovels, D., Kuzmina, I., Berzina, A. & Spigulis, J. (2012). RGB imaging system for monitoring of skin vascular malformation's laser therapy. Proc. SPIE 8427, 842737.10.1117/12.922432Search in Google Scholar

34. Spigulis, J., Jakovels, D. & Rubins, U. (2010). Multi-spectral skin imaging by a consumer photo-camera. Proc. SPIE 7557, 75570M.10.1117/12.845492Search in Google Scholar

35. Spigulis, J., Jakovels, D. & Elste, L. (2012). Towards single snapshot multispectral skin assessment. Proc. SPIE 8216, 82160L.10.1117/12.908967Search in Google Scholar

36. Spigulis, J., Jakovels, D. & Rubins, U. (2012). Method and device for multi-spectral imaging by means of a digital RGB sensor. Patent WO 2012/002787 A1; (2010) Latvian patent LV 14207 B.Search in Google Scholar

37. Spigulis, J., & Elste, L. (2012). Method and device for imaging of spectral reflectance at several spectral bands, Latvian patent LV 14532 B.Search in Google Scholar

38. Spigulis, J., Gailite, L., Lihachev, A. & Erts, R. (2007). Simultaneous recording of skin blood pulsations at different vascular depths by multi-wavelength photoplethysmography. Appl. Opt. 46 (10), 1754-1759.10.1364/AO.46.001754Open DOISearch in Google Scholar

39. Gailite, L., Spigulis, J., & Lihachev, A. (2008). Multilaser photoplethysmography technique. Las. Med. Sci., 23 (2), 189-193.10.1007/s10103-007-0471-917632746Search in Google Scholar

40. Spigulis, J., Gailite, L. & Lihachev, A. (2007). Contact probe pressure effects in skin multi-wavelength photoplethysmography. Proc. SPIE-OSA, 6628, 66281F.Search in Google Scholar

41. Asare, L., Kviesis-Kipge, E., Grabovskis, A., Rubins, U., Erts, R. & Spigulis, J. (2011). Multi-spectral photoplethysmography biosensor. Proc. SPIE, 8073, 80731Z.10.1117/12.887176Search in Google Scholar

42. Asare, L., Kviesis-Kipge, E., Rubins, U., Rubenis, O. & Spigulis, J. (2011). Multispectral photoplethysmography technique for parallel monitoring of pulse shapes at different tissue depths. Proc. SPIE, 8087, 80872E.Search in Google Scholar

43. Asare, L., Kviesis-Kipge, E., Ozols, M., Spigulis, J. & Erts, R. (2012). Multi-spectral optoelectronic device for skin microcirculation analysis. Lith. J.Phys., 52(1), 59-62.10.3952/lithjphys.52109Open DOISearch in Google Scholar

44. Asare, L., Ozols, M., Rubins, U., Rubenis, O. & Spigulis, J. (2012). Clinical measurements with multi-spectral photoplethysmography sensors. Proc. SPIE 8427, 842734.10.1117/12.922361Search in Google Scholar

45. Kviesis-Kipge, E., Curkste, E., Spigulis, J. & Gardovska, D. (2009). Optical studies of the capillary refill kinetics in fingertips. Proc. IFMBE 25/VII, 377-379.10.1007/978-3-642-03885-3_105Search in Google Scholar

46. Kviesis-Kipge, E., Curkste, E., Spigulis, J. & Eihvalde, L. (2010).Real-time analysis of skin capillary-refill processes using blue LED. Proc. SPIE, 7715, 7715231-5.10.1117/12.854263Search in Google Scholar

47. Laksa, E., Zaharans, J. & Rubenis, O. (2012). Device for measurement of capillary blood refill time. Abstr. Int. Conf. “Biophotonics in Dermatology and Cardiology”, Riga, p.34.Search in Google Scholar

48. Spigulis, J., Erts, R., Nikiforovs, V. & Kviesis-Kipge, E. (2008). Wearable wireless photoplethysmography sensors. Proc. SPIE 6991, 6991120.10.1117/12.801966Search in Google Scholar

49. Erts, R., Kviesis-Kipge, E., Zaharans, J., Zaharans, E. & Spigulis, J. (2010). Wireless photoplethysmography finger sensor probe, IEEE Explore, 10.1109/BEC.2010.5630194, 283-284.Search in Google Scholar

50. Kviesis-Kipge, E., Mecnika, V. & Rubenis, O. (2012). Miniature wireless photoplethysmography devices: integration in garments and test measurements. Proc. SPIE 8427, 84273H.Search in Google Scholar

51. Erts, R., Rubins, U. & Spigulis, J. (2009). Monitoring of blood pulsation using noncontact technique, Proc. IFMBE 25/VII, 754-756.10.1007/978-3-642-03885-3_209Search in Google Scholar

52. Rubins, U., Erts, R. & Spigulis, J. (2010). The blood perfusion mapping in the human skin by photoplethysmography imaging, Proc. IFMBI, 29, 304-306.10.1007/978-3-642-13039-7_76Search in Google Scholar

53. Rubins, U., Upmalis, V., Rubenis, O., Jakovels, D. & Spigulis, J. (2011). Real-time photoplethysmography imaging system. Proc. IFMBE, 34, 183-186.10.1007/978-3-642-21683-1_46Search in Google Scholar

54. Miscuks, A., Erts, R., Rubins, U., Spigulis, J., & Mihelsons, M. (2012). Method and device for determination of regional anaesthesia by means of contactless photoplethysmography. Latvian patent LV14444.Search in Google Scholar

ISSN:
0868-8257
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics