À propos de cet article

Citez

Bouis, D.A., Popova, T.G., Takashima, A., Norgard, M.V. (2001). Dendritic cells phagocytose and are activated by Treponemma pallidum. Infect. Immun., 69(1), 518-528.10.1128/IAI.69.1.518-528.2001Search in Google Scholar

Brinkman, M.B., McKevitt, M., McLoughlin, M., Perez, C., Howell, J., Weinstock, G. M., Norris, S.J., Palzkill, T. (2006). Reactivity of antibodies from syphilis patients to a protein array representing the Treponema pallidum proteome. J. Clin. Microbiol., 44(3), 888-891.10.1128/JCM.44.3.888-891.2006Search in Google Scholar

Ebel, A., Vanneste, L., Cardinaels, M., Sablon, E., Samson, I., De Bosshere, K., Hulstaert, F., Zrein, M. (2000). Validation of the INNO-LIA_ Syphilis as a confirmation assay for Treponema pallidum antibodies. Scand. J. Immunol., 38(215), 219-641.Search in Google Scholar

Edward, W., Hook III, M.D., Peeling, R.W. (2004). Syphilis control—a continuing challenge. N. Eng. J. Med., 2, 351.Search in Google Scholar

Eggers, C.H., Caimano, M.J., Clawson, M.L., Miller, W.G., Samuels, D.S., Radolf, J.D. (2002). Identification of loci critical for replication and compatibility of a Borrelia burgdorferi cp32 plasmid and use of a cp32-based shuttle vector for the expression of fluorescent reporters in the Lyme disease spirochete. Mol. Microbiol., 43, 281-295.10.1046/j.1365-2958.2002.02758.xSearch in Google Scholar

Fenton, K.A., Breban, R., Vardavas, R., Okano J.T., Martin, T., Aral, S., Blower, S. (2008). Infectious syphilis in high-income settings in the 21st century. Lancet Infect Dis., 8, 244-253.10.1016/S1473-3099(08)70065-3Search in Google Scholar

Fraser, C. M., Norris, S. J., Weinstock, G. M., White, O., Sutton, G. G., Dodson, R., Gwinn, M., Hickey, E. K., Clayton, R., Ketchum, K. A., Sodergren, E., Hardham, J. M., McLeod, M. P., Salzberg, S., Peterson, J., Khalak, H., Richardson, D., Howell, J. K., Chidambaram, M., Utterback, T., McDonald, L., Artiach, P. Bowman, C., Cotton, M. D., Fujii, C., Garland, S., Hatch, B., Horst, K., Roberts, K., Sandusky, M., Weidman, J., Smith, H. O., Venter, J. C. (1998). Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science, 281, 375-388.10.1126/science.281.5375.3759665876Search in Google Scholar

Girons, I. S., Chi, B., Kuramitsu, H. (2000). Development of shuttle vectors for spirochetes. J. Mol. Microbiol. Biotechnol., 2, 443-445.Search in Google Scholar

Gjestland, T. (1955). The Oslo study of untreated syphilis: An epidemiologic investigation of the natural course of the syphilitic infection based upon a re-study of the Boeck-Bruusgaard material. Acta Derm.Venereol., 35, 3-368.Search in Google Scholar

Goh, B. T., Voorst Vader, P. C. (2001). European guideline for the management of syphilis. Int. Journal of STD&AIDS, 12 (Supplement 3), 26.10.1258/095646201192406511589792Search in Google Scholar

Haake, D. V. (2000). Spirochetal lipoproteins and pathogenesis. Microbiology, 146, 1491-1504.10.1099/00221287-146-7-1491266440610878114Search in Google Scholar

Hagedorn, J., Vanneste, L., De Bosshere, K., Pottel, H., Hulstaert, F., Van de Voorde, A., Zrein, M. (1999). Validation of the interpretation algorithm of INNO-LIA_ Syphilis using well-characterized sera. Innogenetics NV, Gent, Belgium, Study Report code DR-SYP-009, 1-11.Search in Google Scholar

Knight, C. S., Crum, M. A., Hardy, R. W. (2007). Evaluation of the LIAISON Chemiluminescence immunoassay for diagnosis of syphilis. Clin.Vaccine Immunol., 14(6), 710-713.10.1128/CVI.00068-07195108317460119Search in Google Scholar

LaFond, R. E., Lukehart, S. A. (2006). Biological basis for syphilis. Clin Microbiol Rev, 19(1), 29-49.10.1128/CMR.19.1.29-49.2006136027616418521Search in Google Scholar

Larson, S. A. (1995). Laboratory diagnosis and interpretation of tests for syphilis. Clin. Microbiol. Rev., 8, 1.10.1128/CMR.8.1.11728467704889Search in Google Scholar

Lee, K. H., Choi, H. J., Lee, M. G., Lee, J. B. (2000). Virulent Treponema pallidum 47 kDa antigen regulates the expression of cell adhesion molecules and binding of T-lymphocytes to cultured human dermal microvascular endothelial cells. Yonsei Med. J., 41, 623-633.10.3349/ymj.2000.41.5.62311079623Search in Google Scholar

Leslie, D. E., Azzato, F., Karapanagiotidis, T., Leydon, J., Fyfe, J. (2007). Development of a Real-Time PCR Assay to detect Treponema pallidum in clinical specimens and assessment of assay's performance by comparison with serological testing. J. Clin. Microbiol., 45(1), 93-96.10.1128/JCM.01578-06182898617065262Search in Google Scholar

Lien, E., Sellati, T. J., Yoshimura, A., Flo, T. H., Rawadi, G., Finberg, R. W., Carroll, J. D., Espevik, T., Ingalls, R. R., Radolf, J. D., Golenbock, D. T. (1999) Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J. Biol. Chem. 274, 33419-33425.Search in Google Scholar

Muller, I., Brade, V., Hagedorn, H., Straube, E., Schorner, C., Frosch, M., Hlobil, H., Stanek, G., Hunfeld, K. (2006) Is serological testing a reliable tool in laboratory diagnosis of syphilis? Meta-analysis of eight external quality control surveys performed by the German Infection Serology Proficiency Testing Program. J. Clin. Microbiol., 44(4), 1335-1341.10.1128/JCM.44.4.1335-1341.2006144864216597859Search in Google Scholar

Ozoliņš, D., Hartmane, I., Dērveniece, A., Pakalne, V., Žileviča, A. (2006). Diagnostics of syphilis: Evaluation of the enzyme-linked immunosorbent assay of IgG and IgM in comparison with other methods of serological diagnostics. Proc. Latvian Acad. Sci., Section B, 60(4), 127-132.Search in Google Scholar

Porcella, S. F., Schwan, T. G. (2001). Borrelia burgdorferi and Treponema pallidum: A comparison of functional genomics, environmental adoptions and pathogenic mechanisms. J. Clin. Invest., 107(6), 651-656.10.1172/JCI1248420895211254661Search in Google Scholar

Rompalo, A. M., Joesoef, M. R., O'Donnell, J. A., Augenbraun, M., Brady, W., Radolf, J. D., Johnson, R., Rolfs, R. T. (2001). Clinical manifestations of early syphilis by HIV status and gender: results of the syphilis and HIV study. Sex. Transm. Dis. 28, 158-165.10.1097/00007435-200103000-0000711289198Search in Google Scholar

Smith, M. B., Hayden, R. T., Persing, D. H., Woods, G. L. (2001). Spirochete infections. In Clinical diagnosis and management by laboratory methods (pp. 1131-1144). Philadelphia; London; New York; St. Louis; Sydeny; Toronto: Henry J. B. Sounders Company.Search in Google Scholar

Walker, E. M., Arnett, J. K., Heath, J. D., Norris, S. J. (1991). Treponema pallidum subsp. pallidum has a single, circular chromosome with a size of approximately 900 kilobase pairs. Infect. Immun. 59, 2476-2479.10.1128/iai.59.7.2476-2479.19912580342050412Search in Google Scholar

Walker, E. M., Howell, J. K., You, Y., Hoffmaster, A. R., Heath, J. D., Weinstock, G. M., Norris, S. J. (1995). Physical map of the genome of Treponema pallidum subsp. pallidum (Nichols). J. Bacteriol., 177, 1797-1804.10.1128/jb.177.7.1797-1804.19951768087896703Search in Google Scholar

Wesley, C. V., Barrett, L. K., Lukehart, S. A., Schmidt, B., Schriefer, M., Cameron, C. E. (2003). Serodiagnosis of syphilis: Antibodies to recombinant Tp0453, Tp92 and Gpd proteins are sensitive and specific indicators of infection by Treponema pallidum.J. Clin. Microbiol., 41(8), 3668-3674.10.1128/JCM.41.8.3668-3674.200317984412904373Search in Google Scholar

Woznicova, V., Smajs, D., Wechsler, D., Matejkova, P., Flasarova, M. (2007). Detection of Treponema pallidum subsp. pallidum from skin lesions, serum, and cerebrospinal fluid in an infant with congenital syphilis after clindamycin treatment of the mother during pregnancy. J. Clin. Microbiol., 45(2), 659-661.Search in Google Scholar

Woznicova, V., Valisova, Z. (2007). Performance of CAPTIA SelectSyph-G Enzyme-Linked Immunosorbent Assay in syphilis testing of a high-risk population: Analysis of discordant results. J. Clin. Microbiol., 45(6), 1794-1797.10.1128/JCM.02259-06193310517442795Search in Google Scholar

ISSN:
1407-009X
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
General Interest, Mathematics, General Mathematics