À propos de cet article

Citez

Sarbu, A., Janauer, G., Exler, N., Filzmoser, P. (2006). The aquatic vegetation of large Danube river branches in Romania. In Proceedings of the 36th International Conference of IAD, Austrian Committee DanubeResearch (pp. 101-106). Vienna.Search in Google Scholar

Schneider, S., Melzer, A. (2003). The trophic index of macrophytes (TIM)—a new tool for indicating the trophic state of running waters. Int. Rev. Hydrobiol., 88, 49-67.10.1002/iroh.200390005Search in Google Scholar

Scott, W. A., Adamson, J. K., Rollinson, J., Parr, T. W. (2002). Monitoring of aquatic macrophytes for detection of long-term change in river systems. Environ. Monitor. Assess., 73, 131-153.10.1023/A:1013023501051Search in Google Scholar

Abou-Hamdan, H., Haury, J., Hebrard, J. P., Dandelot, S., Cazaubon, A. (2005). Macrophytic communities inhabiting the Huveaune (South-East France), a river subject to natural and anthropic disturbances. Hydrobiologia, 551, 161-170.10.1007/s10750-005-4458-xSearch in Google Scholar

Burnett, D. A., Champion, P. D., Clayton, J. S., Ogden J. (2007). A system for investigation of the temperature responses of emergent aquatic plants. Aquatic Botany, 86(2), 187-190.10.1016/j.aquabot.2006.09.015Search in Google Scholar

Chambers, P. A., Prepas, E. E., Hamilton, H. R., Bothwell, M. L. (1991). Current velocity and its effect on aquatic macrophytes in flowing waters. Ecol. Applic., 1(3), 249-257.10.2307/1941754Search in Google Scholar

Chambers, P. A., DeWreede, R. E., Irlandi, E. A., Vandermeulen, H. (1999). Management issues in aquatic macrophyte ecology: A Canadian perspective. Can. J. Bot. 77, 471-487.Search in Google Scholar

Cimdiņš, P., Druvietis, I., Liepa, R., Parele, E., Urtāne, L., Urtāns, A. (1995). A Latvian catalogue of indicator species of freshwater saprobity. Proc. Latvian Acad. Sci., Section B, No. 1/2, 122-133.Search in Google Scholar

Clarke, S. J., Wharton G. (2001). Sediment nutrient characteristics and aquatic macrophytes in lowland English rivers. Sci. Total Environ., 266, 103-112.10.1016/S0048-9697(00)00754-3Search in Google Scholar

Druvietis, I., Briede, A., Grinberga, L., Parele, E., Rodinovs, V., Springe, G. (2007). Long-term assessment of hydroecosystem of the River Salaca, North Vidzeme Biosphere Reserve, Latvia. In Climate Change in Latvia. (pp. 173-192). Riga: University of Latvia.Search in Google Scholar

Ellenberg, H., Weber, H. E., Düll, R. (1992). Zeigenwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1-258.Search in Google Scholar

Georg, A., Janauer, Lanz, E., Filzmoser, P., Exler, N. (2006). Breg and Brigach, source streams of the Danube: Changes based on macrophyte surveys 1967, 1989, and 2004. Proceedings of the 36th International Conference of International Association for Danube Research, 7-8 September 2006. (pp. 86-90). Austrian Committee DanubeResearch. Vienna.Search in Google Scholar

Hearne, J. W., Armitage, P. D. (1993). Implications of the annual macrophyte growth cycle on habitat in rivers. Regul. Rivers. Res. Man., 8, 313-322.10.1002/rrr.3450080402Search in Google Scholar

Jansons, V., Vagstad, N., Sudars, R., Deelstra, J., Dzalbe, I., Kirsteina, D. (2002). Nutrient losses from point and diffuse agricultural sources in Latvia. Landbauforschnung Volkenrode, 1(52), 9-17.Search in Google Scholar

Kankaala, P., Ojala, A., Tulonen, T., Haapamaki, J., Arvola, L. (2000). Response of littoral vegetation on climate warming in the boreal zone: An experimental simulation. Aquatic Ecol., 34, 433-444.10.1023/A:1011457815299Search in Google Scholar

Lacoul, P., Freedman, B. (2006). Environmental influences on aquatic plants in freshwater ecosystems. Environ. Rev./Dossiers Environ. 14(2), 89-136.10.1139/a06-001Search in Google Scholar

Madsen, T. V., Brix, H. (1997). Growth, photosynthesis and acclimation by two submerged macrophytes in relation to temperature. Oecologia. 110, 320-327.10.1007/s00442005016528307220Search in Google Scholar

McKee, J., Richards, A. J. (1996). Variation in seed production and germinability in common reed (Phragmites australis) in Britain and France with respect to climate. New Phytol. 133, 233-243.10.1111/j.1469-8137.1996.tb01890.x29681068Search in Google Scholar

Melzer, A. (1999). Aquatic macrophytes as tools for lake management. Hydrobiologia, 395/396, 181-190.10.1023/A:1017001703033Search in Google Scholar

Middlekoop, H. (2000). The impact of climate change on the River Rhine and the implications for water management in the Netherlands. Lelystad: Lelystad: RIZA (Institute for Inland Water Management and Waste Water Treatment). 156 pp.Search in Google Scholar

Sand-Jensen, K. (1998). Influence of submerged macrophytes on sediment composition and near bed flow in lowland streams. Freshwater Biol., 39(4), 663-679.10.1046/j.1365-2427.1998.00316.xSearch in Google Scholar

Sand-Jensen, K., Pedersen, O. (1999). Velocity gradients and turbulence around macrophyte stands in streems. Freshwater Biol., 42(2), 315-328.10.1046/j.1365-2427.1999.444495.xSearch in Google Scholar

Vereecken, H., Baetens, J., Viaene, P., Mostaert, F., Meire, P. (2006). Ecological management of aquatic plants: Effects in lowland streams. Hydrobiologia, 570, 205-210.10.1007/s10750-006-0181-5Search in Google Scholar

Аноним (1975). Мемо∂uка uзученuя бuогеоценозов внумреннuх во∂оемв [Methods of investigation on inland waters] Москва: Наука, с. 17-132.Search in Google Scholar

Уртанс, А. В. (1989). Структура и распределение высшей водной растителности в р. Салаца [Structure and distribution of aquatic plants in the River Salaca]. В книге: Бuоценоmuческая cmpykmypa малых рек. Бассеuн рекu Салаца. Рига, Зинатне, с. 163-182 (in Russian).Search in Google Scholar

ISSN:
1407-009X
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
General Interest, Mathematics, General Mathematics