Accès libre

Definition and some Properties of Information Entropy

 et   
09 juin 2008
À propos de cet article

Citez
Télécharger la couverture

In this article we mainly define the information entropy [3], [11] and prove some its basic properties. First, we discuss some properties on four kinds of transformation functions between vector and matrix. The transformation functions are LineVec2Mx, ColVec2Mx, Vec2DiagMx and Mx2FinS. Mx2FinS is a horizontal concatenation operator for a given matrix, treating rows of the given matrix as finite sequences, yielding a new finite sequence by horizontally joining each row of the given matrix in order to index. Then we define each concept of information entropy for a probability sequence and two kinds of probability matrices, joint and conditional, that are defined in article [25]. Further, we discuss some properties of information entropy including Shannon's lemma, maximum property, additivity and super-additivity properties.

Langue:
Anglais
Périodicité:
1 fois par an
Sujets de la revue:
Mathématiques, Mathématiques générales, Informatique, Informatique, autres