Accès libre

Molecular Genetics of Breast and Ovarian Cancer: Recent Advances and Clinical Implications

À propos de cet article

Citez

1. Turnbull C, Rahman N. Genetic predisposition to breast cancer: past, present, and future. Annu Rev Genomics Hum Genet. 2008; 9: 321-345.10.1146/annurev.genom.9.081307.16433918544032Search in Google Scholar

2. Ghoussaini M, Pharoah PD. Polygenic susceptibility to breast cancer: current state-of-the-art. Future Oncol. 2009; 5(5): 689-701.10.2217/fon.09.29493189519519208Search in Google Scholar

3. Gayther SA, Pharoah PD. The inherited genetics of ovarian and endometrial cancer. Curr Opin Genet Dev. 2010; 20(3): 231-238.10.1016/j.gde.2010.03.001307317120456938Search in Google Scholar

4. Risch HA, McLaughlin JR, Cole DE, et al. Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am J Hum Genet. 2001; 68(3): 700-710.10.1086/318787127448211179017Search in Google Scholar

5. Thompson D, Easton D, Breast Cancer Linkage Consortium. Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. Am J Hum Genet. 2001; 68(2): 410-419.10.1086/318181123527411170890Search in Google Scholar

6. Bogdanova NV, Antonenkova NN, Rogov YI, Karstens JH, Hillemanns P, Dörk T. High frequency and allele-specific differences of BRCA1 founder mutations in breast cancer and ovarian cancer patients from Belarus. Clin Genet. 2010; 78(4): 364-372.10.1111/j.1399-0004.2010.01473.x20569256Search in Google Scholar

7. Antoniou AC, Sinilnikova OM, Simard J, et al. RAD51 135G>C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet. 2007; 81(6): 1186-1200.10.1086/522611227635117999359Search in Google Scholar

8. Ramus SJ, Kartsonaki C, Gayther SA, Pharoah PD, Sinilnikova OM, Beesley J. Genetic variation at 9p22.2 and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst. 2011; 103(2): 105-116.10.1093/jnci/djq494310756521169536Search in Google Scholar

9. Rahman N, Seal S, Thompson D, et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet. 2007; 39(2): 165-167.10.1038/ng1959287159317200668Search in Google Scholar

10. Erkko H, Xia B, Nikkilä J, et al. A recurrent mutation in PALB2 in Finnish cancer families. Nature. 2007; 446(7133): 316-319.10.1038/nature0560917287723Search in Google Scholar

11. Erkko H, Dowty JG, Nikkilä J, et al. Penetrance analysis of the PALB2 c.1592delT founder mutation. Clin Cancer Res 2008;14(14):4667-4671.10.1158/1078-0432.CCR-08-021018628482Search in Google Scholar

12. Dansonka-Mieszkowska A, Kluska A, Moes J, et al. A novel germline PALB2 deletion in Polish breast and ovarian cancer patients. BMC Med Genet. 2010; 11: 20.10.1186/1471-2350-11-20282900920122277Search in Google Scholar

13. Prokofyeva D, Bogdanova N, Bermisheva M, et al. Rare occurrence of PALB2 mutations in ovarian cancer patients from the Volga-Ural region. Clin Genet. 2012; 82(1): 100-101.10.1111/j.1399-0004.2011.01824.x22310028Search in Google Scholar

14. Meindl A, Hellebrand H, Wiek C, et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet. 2010; 42(5): 410-414.10.1038/ng.56920400964Search in Google Scholar

15. Pelttari LM, Heikkinen T, Thompson D, et al. RAD51C is a susceptibility gene for ovarian cancer. Hum Mol Genet. 2011; 20(16): 3278-3288.10.1093/hmg/ddr22921616938Search in Google Scholar

16. Loveday C, Turnbull C, Ramsay E, Hughes D, Ruark E, Frankum JR. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat Genet. 2011; 43(9): 879-882.10.1038/ng.893484588521822267Search in Google Scholar

17. Seal S, Thompson D, Renwick A, et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet. 2006; 38(11): 1239-1241.10.1038/ng190217033622Search in Google Scholar

18. Masciari S, Larsson N, Senz J, et al. Germline E-cadherin mutations in familial lobular breast cancer. J Med Genet. 2007; 44(11): 726-731.10.1136/jmg.2007.051268275218417660459Search in Google Scholar

19. Xie ZM, Li LS, Laquet C, et al. Germline mutations of the E-cadherin gene in families with inherited invasive lobular breast carcinoma but no diffuse gastric cancer. Cancer. 2011; 117(14): 3112-3117.10.1002/cncr.2587621271559Search in Google Scholar

20. Swift M, Reitnauer PJ, Morrell D, Chase CL. Breast and other cancers in families with ataxiatelangiectasia. N Engl J Med. 1987; 316(21): 1289-1294.10.1056/NEJM1987052131621013574400Search in Google Scholar

21. Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003; 3(3): 155-168.10.1038/nrc101112612651Search in Google Scholar

22. Renwick A, Thompson D, Seal S, et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet. 2006; 38(8): 873-875.10.1038/ng183716832357Search in Google Scholar

23. Pylkäs K, Tommiska J, Syrjäkoski K, et al. Evaluation of the role of Finnish ataxia-telangiectasia mutations in hereditary predisposition to breast cancer. Carcinogenesis. 2007; 28(5): 1040-1045.10.1093/carcin/bgl23717166884Search in Google Scholar

24. Bogdanova N, Cybulski C, Bermisheva M, et al. A nonsense mutation (E1978X) in the ATM gene is associated with breast cancer. Breast Cancer Res Treat. 2009; 118(1): 207-211.10.1007/s10549-008-0189-918807267Search in Google Scholar

25. Górski B, Cybulski C, Huzarski T, et al. Breast cancer predisposing alleles in Poland. Breast Cancer Res Treat. 2005; 92(1): 19-24.10.1007/s10549-005-1409-115980987Search in Google Scholar

26. Steffen J, Nowakowska D, Niwinska A, et al. Germline mutations 657del5 of the NBS1 gene contribute significantly to the incidence of breast cancer in Central Poland. Int J Cancer. 2006; 119(2): 472-475.10.1002/ijc.2185316770759Search in Google Scholar

27. Bogdanova N, Feshchenko S, Schürmann P, et al. Nijmegen Breakage Syndrome mutations and risk of breast cancer. Int J Cancer. 2008; 122(4): 802-806.10.1002/ijc.2316817957789Search in Google Scholar

28. Heikkinen K, Rapakko K, Karppinen SM, et al. RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis. 2006; 27(8): 1593-1599.10.1093/carcin/bgi360300618916474176Search in Google Scholar

29. Bartkova J, Tommiska J, Oplustilova L, et al. Aberrations of the MRE11-RAD50-NBS1 DNA damage sensor complex in human breast cancer: MRE11 as a candidate familial cancer-predisposing gene. Mol Oncol. 2008; 2(4): 296-316.10.1016/j.molonc.2008.09.007552777319383352Search in Google Scholar

30. Walsh T, Casadei S, Lee MK, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci USA. 2011; 108(44): 18032-18037.10.1073/pnas.1115052108320765822006311Search in Google Scholar

31. Nevanlinna H, Bartek J. The CHEK2 gene and inherited breast cancer susceptibility. Oncogene. 2006; 25(43): 5912-5919.10.1038/sj.onc.120987716998506Search in Google Scholar

32. Meijers-Heijboer H, van den Ouweland A, Klijn J, et al; CHEK2-Breast Cancer Consortium. Lowpenetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet. 2002; 31(1): 55-59.10.1038/ng87911967536Search in Google Scholar

33. Vahteristo P, Bartkova J, Eerola H, et al. A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am J Hum Genet. 2002; 71(2): 432-438.10.1086/34194337917712094328Search in Google Scholar

34. CHEK2 Breast Cancer Case-Control Consortium. CHEK2*1100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies. Am J Hum Genet. 2004; 74(6): 1175-1182.10.1086/421251118208115122511Search in Google Scholar

35. Adank MA, Jonker MA, Kluijt I, et al. CHEK2* 1100delC homozygosity is associated with a high breast cancer risk in women. J Med Genet. 2011; 48(12): 860-863.10.1136/jmedgenet-2011-10038022058428Search in Google Scholar

36. Cybulski C, Wokołorczyk D, Huzarski T, et al. A deletion in CHEK2 of 5,395 bp predisposes to breast cancer in Poland. Breast Cancer Res Treat. 2007; 102(1): 119-122.10.1007/s10549-006-9320-y16897426Search in Google Scholar

37. Bogdanova N, Enssen-Dubrowinskaja N, Feshchenko S, et al. Association of two mutations in the CHEK2 gene with breast cancer. Int J Cancer. 2005; 116(2): 263-266.10.1002/ijc.2102215810020Search in Google Scholar

38. Cybulski C, Górski B, Huzarski T, et al. CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet. 2004; 75(6): 1131-1135.10.1086/426403118214915492928Search in Google Scholar

39. Easton DF, Pooley KA, Dunning AM, et al. Genomewide association study identifies novel breast cancer susceptibility loci. Nature. 2007; 447(7148): 1087-1093.10.1038/nature05887271497417529967Search in Google Scholar

40. Ahmed S, Thomas G, Ghoussaini M, et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet. 2009; 41(5): 585-590.10.1038/ng.354274812519330027Search in Google Scholar

41. Antoniou AC, Wang X, Fredericksen ZS, et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet 2010;42(10):885-892.10.1038/ng.669313079520852631Search in Google Scholar

42. Turnbull C, Ahmed S, Morrison J, et al. Genomewide association study identifies five new breast cancer susceptibility loci. Nat Genet. 2010; 42(6): 504-507.10.1038/ng.586363283620453838Search in Google Scholar

43. Haiman CA, Chen GK, Vachon CM, et al. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer. Nat Genet. 2011; 43(12): 1210-1214.10.1038/ng.985327912022037553Search in Google Scholar

44. Long J, Cai Q, Sung H, et al. Genome-wide association study in East Asians identifies novel susceptibility loci for breast cancer. PLoS Genet. 2012; 8(2): e1002532.Search in Google Scholar

45. Ghoussaini M, Fletcher O, Michailidou K, et al. Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat Genet. 2012; 44(3): 312-318.10.1038/ng.1049365340322267197Search in Google Scholar

46. Song H, Ramus SJ, Tyrer J, et al. A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2. Nat Genet. 2009; 41(9): 996-1000.10.1038/ng.424284411019648919Search in Google Scholar

47. Goode EL, Chenevix-Trench G, Song H, et al. A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24. Nat Genet. 2010; 42(10): 874-879.10.1038/ng.668302023120852632Search in Google Scholar

48. Bolton KL, Tyrer J, Song H, et al. Common variants at 19p13 are associated with susceptibility to ovarian cancer. Nat Genet. 2010; 42(10): 880-884.10.1038/ng.666312549520852633Search in Google Scholar

49. Ghoussaini M, Song H, Koessler T, et al. Multiple loci with different cancer specificities within the 8q24 gene desert. J Natl Cancer Inst. 2008; 100(13): 962-966.10.1093/jnci/djn190290281918577746Search in Google Scholar

50. Wellcome Trust Case Control Consortium. Genomewide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature. 2010; 464(7289): 713-720.10.1038/nature08979289233920360734Search in Google Scholar

51. Pharoah PD, Antoniou AC, Easton DF, Ponder BA. Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med. 2008; 358(26): 2796-2803.10.1056/NEJMsa070873918579814Search in Google Scholar

52. Pashayan N, Duffy SW, Chowdhury S, et al. Polygenic susceptibility to prostate and breast cancer: implications for personalised screening. Br J Cancer. 2011; 104 (10): 1656-1663.10.1038/bjc.2011.118309336021468051Search in Google Scholar

53. Robertson L, Hanson H, Seal S, et al. BRCA1 testing should be offered to individuals with triple-negative breast cancer diagnosed below 50 years. Br J Cancer. 2012; 106(6): 1234-1238.10.1038/bjc.2012.31330441022333603Search in Google Scholar

54. Broeks A, Schmidt MK, Sherman ME, et al. Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Hum Mol Genet. 2011; 20(16): 3289-3303.10.1093/hmg/ddr228314082421596841Search in Google Scholar

55. Hynes NE, Dey JH. Potential for targeting the fibroblast growth factor receptors in breast cancer. Cancer Res. 2010; 70(13): 5199-5202.10.1158/0008-5472.CAN-10-091820570901Search in Google Scholar

56. Bolton KL, Chenevix-Trench G, Goh C, et al. Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA. 2012; 307(4): 382-390.10.1001/jama.2012.20372789522274685Search in Google Scholar

57. Dedes KJ, Wilkerson PM, Wetterskog D, Weigelt B, Ashworth A, Reis-Filho JS. Synthetic lethality of PARP inhibition in cancers lacking BRCA1 and BRCA2 mutations. Cell Cycle. 2011; 10(8): 1192-1199.10.4161/cc.10.8.15273311713221487248Search in Google Scholar

58. Reaper PM, Griffiths MR, Long JM, et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol. 2011; 7(7): 428-430. 10.1038/nchembio.57321490603Search in Google Scholar

ISSN:
1311-0160
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Medicine, Basic Medical Science, other