Accès libre

Adsorption of humic acid on mesoporous carbons prepared from poly- (ethylene terephthalate) templated with magnesium compounds

À propos de cet article

Citez

1. Zhan, Y., Lin, J., Qiu, Y., Gao, N. & Zhu, Z. (2011). Adsorption of humic acid from aqueous solution on bilayer hexadecyltrimethyl ammonium bromide-modified zeolite. Front.Environ. Sci. Engin. Chin. 5, 65-75. DOI: 10.1007/s11783-010- 0277-z.Search in Google Scholar

2. Lesley, J., Flora, J.R.V., Park, Y., Badawy, M., Hazem, S. & Yoon, Y. (2012). Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials. Sep. Purif. Technol. 95, 64-72. DOI: 10.1016/j.seppur.2012.04.033.10.1016/j.seppur.2012.04.033Search in Google Scholar

3. Huang, W.J. & Yeh, H.H. (1999). Reaction of chlorine with NOM adsorbed on powdered activated carbon. Water Res. 33, 65-72. DOI: 10.1016/S0043-1354(98)00184-5.10.1016/S0043-1354(98)00184-5Search in Google Scholar

4. Imyim, A. & Prapalimrungsi, E. (2010). Humic acids removal from water by aminopropyl functionalized rice husk ash. J.Hazard. Mater. 184,775-781. DOI: 10.1016/j.jhazmat.2010.08.108.10.1016/j.jhazmat.2010.08.108Search in Google Scholar

5. Carlson, G. & Silvestrain, J. (1997). Effect of ozonation on sorption of natural organic matter by biofilm. Water Res. 31, 2467-2478. DOI: 10.1016/S0043-1354(97)00106-1.10.1016/S0043-1354(97)00106-1Search in Google Scholar

6. Anirudhan, T.S., Suchithra, P. S. & Rijith, S. (2008). Amine-modified polyacrylamide-bentonite composite for the adsorption of humicacid in aqueous solutions. Colloids andSurf. A: Physicochem. Eng. Asp. 326, 147-156. DOI: 10.1016/j. colsurfa.2008.05.022.Search in Google Scholar

7. Lorenc-Grabowska, E., Gryglewicz, G. (2005). Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbons. J. Colloid Interface Sci. 284, 416-423. DOI: 10.1016/j.jcis.2004.10.031.10.1016/j.jcis.2004.10.031Search in Google Scholar

8. Lorenc-Grabowska, E. & Gryglewicz, G. (2007). Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes Pigment. 74, 34-40. DOI: 10.1016/j. dyepig.2006.01.027.Search in Google Scholar

9. Maghsoodloo, Sh., Noroozi, B., Haghi, A.K. & Sorial, G.A. (2011). Consequence of chitosan treating on the adsorption of humic acid by granular activated carbon. J. Hazard. Mater. 191, 380-387. DOI: 10.1016/j.jhazmat.2011.04.096.10.1016/j.jhazmat.2011.04.096Search in Google Scholar

10. Mohanty, K., Das, D. & Biswas, M.N. (2005). Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation. Chem. Eng. J. 115, 121-131. DOI: 10.1016/j.cej.2005.09.016.10.1016/j.cej.2005.09.016Search in Google Scholar

11. Kilic, M., Apaydin-Varol, E. & Pütün, A.E. (2011). Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 189, 397-403. DOI: 10.1016/j.jhazmat.2011.02.051.10.1016/j.jhazmat.2011.02.051Search in Google Scholar

12. Newcombe, G., Drikas, M. & Hayes, R. (1997). Influence of characterized natural organic material on activatedcarbon adsorption: II. Effect on pore volume distribution and adsorption of 2- methylisoborneol. Water Res. 31, 1065-1073. DOI: 10.1016/S0043-1354(96)00325-9.10.1016/S0043-1354(96)00325-9Search in Google Scholar

13. Lin, J. & Zhan, Y. (2012). Adsorption of humic acid from aqueous solution onto unmodified and surfactant-modified chitosan/zeolite composites. Chem. Eng. J. 200-202, 202-213. DOI: 10.1016/j.cej.2012.06.039.10.1016/j.cej.2012.06.039Search in Google Scholar

14. Doulia, D., Leodopoulos, Ch., Gimouhopoulos, K. & Rigas, F. (2009). Adsorption of humic acid on acid-activated Greek bentonite. J.Colloid Interface Sci. 340, 131-141. DOI: 10.1016/j.jcis.2009.07.028.10.1016/j.jcis.2009.07.028Search in Google Scholar

15. Wu, F.Ch., Tseng, R.L. & Juang, R.S. (2002). Adsorption of dyes and humic acid from water using chitosan-encapsulated activated carbon. J. Chem. Technol. Biotechnol. 77, 1269-1279. DOI: 10.1002/jctb.705.10.1002/jctb.705Search in Google Scholar

16. Maghsoodloo, S., Noroozi, B., Haghi, A.K. & Sorial, G.A. (2011). Consequence of chitosan treating on the adsorption of humic acid by granular activated carbon. J. Hazard. Mater. 191, 380-387. DOI: 10.1016/j.jhazmat.2011.04.096.10.1016/j.jhazmat.2011.04.096Search in Google Scholar

17. Moura, M.N., Martín, M.J. & Burguillo, F.J. (2007). A comparative study of the adsorption of humic acid, fulvic acid and phenol onto Bacillus subtilis and activated sludge. J.Hazard. Mater. 149, 42-48. DOI:10.1016/j.jhazmat.2007.02.074.10.1016/j.jhazmat.2007.02.074Search in Google Scholar

18. Lai, C.H. & Chen, C.Y. (2001). Removal of metal ions and humic acid from water by iron-coated filter media. Chemosphere 44, 1177-1184. DOI: 10.1016/S0045-6535(00)00307-6.10.1016/S0045-6535(00)00307-6Search in Google Scholar

19. Chen, J.P. & Wu, S. (2004). Simultaneous adsorption of copper ions and humic acid onto an activated carbon. J. ColloidInterface Sci. 280, 334-342. DOI: 10.1016/j.jcis.2004.08.029.10.1016/j.jcis.2004.08.029Search in Google Scholar

20. Velten, S., Knappe, D.R.U., Traber, J., Kaiser, H. P., Gunten, U., Boller M. & Meylan, S. (2011). Characterization of natural organic matter adsorption in granular activated carbon adsorbers. Water Res. 45, 3951-3959. DOI: 10.1016/j. watres.2011.04.047.Search in Google Scholar

21. Daifullah, A.A.M., Girgis, B.S. & Gad, H.M.H. (2004). A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material. Colloids Surf.A 235, 1-10. DOI: 10.1016/j.colsurfa.2003.12.020.10.1016/j.colsurfa.2003.12.020Search in Google Scholar

22. Stárek, J., Zukal, A. & Rathouský, J. (1994). Comparison of the adsorption of humic acids from aqueous solutions on active carbon and activated charcoal cloths. Carbon 32, 207-211. DOI: 10.1016/0008-6223(94)90184-8.10.1016/0008-6223(94)90184-8Search in Google Scholar

23. Morishita , T., Tsumura, T., Toyoda, M., Przepiórski, J., Morawski, A. W., Konno, H. & Inagaki, M. (2010). A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon 48, 2690 -2707. DOI: 10.1016/j. carbon.2010.03.064.Search in Google Scholar

24. Han, S., Kim, S., Lim, H., Choi, W., Park, H., Yoon, J. & Hyeon, T. (2003) New nanoporous carbon materials with highadsorption capacity and rapid adsorption kinetics for removing humic acids. Microporous Mesoporous Mater. 58, 131-135. DOI: 10.1016/S1387-1811(02)00611-X.10.1016/S1387-1811(02)00611-XSearch in Google Scholar

25. Yue, Z., Mangun, C.L. & Economy, J. (2004). Characterization of surface chemistry and pore structure of H3PO4- -activated poly(vinyl alcohol) coated fiberglass. Carbon 42, 1973-1982. DOI: 10.1016/j.carbon.2004.03.030.10.1016/j.carbon.2004.03.030Search in Google Scholar

26. Tamai, H., Yoshida, T., Sasaki, M. & Yasuda, H. (1999). Dye adsorption on mesoporous activated carbon fiber obtained from pitch containing yttrium complex. Carbon 37, 983-989. DOI: 10.1016/S0008-6223(98)00294-2.10.1016/S0008-6223(98)00294-2Search in Google Scholar

27. Davini, P. (2001). SO2 and NOx adsorption properties of activated carbons obtained from a pitch containing iron derivatives. Carbon 39, 2173-2179. DOI: 10.1016/S0008- 6223(01)00035-5.Search in Google Scholar

28. Nakagawa, K., Mukai, S.R., Suzuki, T. & Tamon, H. (2003). Gas adsorption on activated carbons from PET mixtures with a metal salt. Carbon 41 (2003) 823-831. DOI: 10.1016/ S0008-6223(02)00404-9.Search in Google Scholar

29. Przepiórski, J., Karolczyk, J., Takeda, K., Tsumura, T., Toyoda, M. & Morawski, A. W. (2009). Porous Carbon Obtained by Carbonization of PET mixed with basic magnesium carbonate: Pore Structure and Pore Creation Mechanism. Ind. Eng. Chem. Res. 48, 7110-7116. DOI: 10.1021/ie801694t.10.1021/ie801694tSearch in Google Scholar

30. Karolczyk, J., Janus, M. & Przepiórski, J. (2012). Removal of model contaminants from water by porous carbons obtained through carbonization of poly(ethylene terephthalate) mixed with some magnesium compounds. J. Porous Mater. DOI: 10.1007/s10934-012-9585-y.10.1007/s10934-012-9585-ySearch in Google Scholar

31. Czyżewski, A., Karolczyk, J., Usarek, A. & Przepiórski, J. (2012). Removal of two ionic dyes from water by MgOloaded porous carbons prepared through one-step process from poly(ethylene terephthalate)/ magnesium carbonate mixtures. Bull. Mater. Sci. 35, 211-219.10.1007/s12034-012-0269-7Search in Google Scholar

32. Przepiórski, J., Karolczyk, J., Tsumura, T., Toyoda, M., Inagaki, M.& Morawski, A.W. (2011). Effect of some thermally unstable magnesium compounds on the yield of char formed from poly(ethylene terephthalate). J. Therm. Anal. Calorim. 107 (3), 1147-1154. DOI 10.1007/s10973-011-1910-1.Search in Google Scholar

33. Yorgun, S., Vural, N. & Demiral, H. (2009). Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous Mesoporous Mater. 122, 189-194. DOI: 10.1016/j.micromeso.2009.02.032.10.1016/j.micromeso.2009.02.032Search in Google Scholar

34. Hared, I.A., Dirion, J.L., Salvador, S., Lacroix, M., Rio, S. (2007). Pyrolysis of wood impregnated with phosphoric acid for the production of activated carbon: Kinetics and porosity development studies. J. Anal. Appl. Pyrolysis 79, 101-105. DOI: 10.1016/j.jaap.2006.12.016.10.1016/j.jaap.2006.12.016Search in Google Scholar

35. Tham, Y.J., Latif, P.A., Abdullah, A.M., Shamala-Devi, A. & Taufiq-Yap, Y.H. (2011). Performances of toluene removal by activated carbon derived from durian shell. Bioresour. Technol. 102, 724-728. DOI: 10.1016/j.biortech.2010.08.068.10.1016/j.biortech.2010.08.068Search in Google Scholar

36. Bansode, R.R., Losso, J.N., Marshall, W.E., Rao, R.M. & Portier, R.J. (2004). Pecan shell-based granular activated carbon for treatment of chemical oxygen demand (COD) in municipal wastewater. Bioresour. Technol. 94, 129-135. DOI: 10.1016/j.biortech.2003.12.009.10.1016/j.biortech.2003.12.009Search in Google Scholar

37. Inagaki, M., Kato, M., Morishita, T., Morita, K. & Mizuuchi, K. (2007). Direct preparation of mesoporous carbon from a coal tar pitch. Carbon 45, 1121-1124. DOI: 10.1016/j. carbon.2007.01.014. DOI: 10.1016/j.jpowsour.2007.09.042.10.1016/j.jpowsour.2007.09.042Search in Google Scholar

38. Fernández, J.A., Morishita, T., Toyoda, M., Inagaki, M., Stoeckli, F. & Centeno, T.A. (2008). Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors. J. Power Sources 175, 675-679. DOI: 10.1016/j. jpowsour.2007.09.042.Search in Google Scholar

39. Peuravuori, J., Koivikko, R. & Pihlaja, K. (2002). Characterization, differentiation and classification of aquatic humic matter separated with different sorbents: synchronous scanning fluorescence spectroscopy. Water Res. 36, 4552-4562. DOI: 10.1016/S0043-1354(02)00172-0.10.1016/S0043-1354(02)00172-0Search in Google Scholar

40. Uyguner, C.S. & Bekbolet, M. (2005). Evaluation of humic acid photocatalytic degradation by UV-vis and fluorescence spectroscopy. Catal. Today 101, 267-274. DOI: 10.1016/j. cattod.2005.03.011.Search in Google Scholar

41. Pelekani, C., Snoeyink, V.L. (1999). Competitive adsorption in natural water: role of activated carbon pore size. WaterRes. 33, 1209-1219. DOI: 10.1016/S0043-1354(98)00329-7.10.1016/S0043-1354(98)00329-7Search in Google Scholar

42. Mui, E.L.K., Cheung, W.H., Valix, M. & McKay, G. (2010). Dye adsorption onto activated carbons from tyre rubber waste using surface coverage analysis. J. Colloid InterfaceSci. 347, 290-300. DOI: 10.1016/j.jcis.2010.03.061.10.1016/j.jcis.2010.03.061Search in Google Scholar

43. Yuan, X., Zhuo, S.-P., Xing, W., Cui, H.-Y., Dai, X.-D., Lui, X.-M. & Yan, Z.-F. (2007). Aqueous dye adsorption on ordered mesoporous carbons. J. Colloid Interface Sci. 310, 83-89. DOI: 10.1016/j.jcis.2007.01.069.10.1016/j.jcis.2007.01.069Search in Google Scholar

44. Tryba, B., Brożek, P., Piszcz, M. & Morawski, A.W. (2011). New photocatalyst for decomposition of humic acids in photocatalysis and photo-Fenton processes. Pol. J. Chem.Technol., 13, 08-14. DOI: 10.2478/v10026-011-0042-5.10.2478/v10026-011-0042-5Search in Google Scholar

45. Chen, J., LeBoeuf, E.J., Dai, S. & Gu, B. (2003). Fluoresence spectroscopic studied of natural organic matter fractions. Chemosphere 50, 639-647. DOI: 10.1016/S0045-6535(02)00616-1.10.1016/S0045-6535(02)00616-1Search in Google Scholar

46. Fasurová, N., Čechlovská, H. & Kučerík, J. (2006). A comparative study of South Moravian lignite and standard IHSS humic acids, optical and colloidal properties. Pet. Coal. 48, 24-32.Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering