Accès libre

Quality assurance and dosimetric analysis of intensity modulation radiotherapy using compensators for head and neck cancers

À propos de cet article

Citez

Bortfeld T, Schlegel W, Rhein B. Decomposition of pencil beam kernels for fast dose calculations in three-dimensional treatment planning. Med Phys. 1993; 20: 311-318.10.1118/1.597070Search in Google Scholar

Boyer AL. Compensating filters for high energy X rays. Med Phys. 1982; 9: 429-433.10.1118/1.595225Search in Google Scholar

Chang SX, Cullip TJ, Deschesne KM, et al. Compensators: an alternative IMRT delivery technique. J Appl Clin Med Phys. 2004; 5: 15-36.10.1120/jacmp.v5i3.1965Search in Google Scholar

Chufal KS, Nangia S, Tyagi A et al. 2439: Intensity Modulated Radiotherapy Using Compensators for Head and Neck Cancer Patients: Impact of Dosimetric Parameters on Clinical Outcome. Int J Radiat Oncol Biol Phys. 2006 Nov 1; 66(3): S453-454.Search in Google Scholar

Djordjevich A, Bonham DJ, Hussein EM, Andrew JW, Hale ME. Optimal design of radiation compensators. Med Phys. 1990; 17: 397-404.10.1118/1.596519Search in Google Scholar

Esthappan J, Mutic S, Harms WB, Dempsey JF, Low DA. Dosimetry of therapeutic photon beams using an extended dose range film. Med Phys. 2002; 29: 2438-45.10.1118/1.1508379Search in Google Scholar

Fact sheet atuimo 2.5D 72200-0153/Rev. 01/ 02.2005. Bebig Isotopen-und Medizintechnik GmbH.Search in Google Scholar

Faddegon BA, Pfalzner P. Computer aided design and verification of megavoltage tissue compensators for oblique beams. Med Phys. 1988; 15: 757-762.10.1118/1.596190Search in Google Scholar

Garry A, Ezzal, et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM Radiation Therapy Committee. Med Phys. 2003; (30): 2089-2115.10.1118/1.1591194Search in Google Scholar

Jiang SB, Ayyangar KM. On compensator design for photon beam intensity-modulated conformal therapy. Med Phys. 1998: 25(5): 668-675.10.1118/1.598250Search in Google Scholar

Lee N, Xia P, Fischbein NJ, Akazawa P, Akazawa C, Quivey JM. Intensity-modulated radiation therapy for head-and-neck cancer: the UCSF experience focusing on target volume delineation. Int J Radiat Oncol Biol Phys. 2003; 57: 49-60.10.1016/S0360-3016(03)00405-XSearch in Google Scholar

Mageras GS, Mohan R, Burman C, Barest GD, Kutcher GJ. Compensators for three-dimensional treatment planning. Med Phys. 1991; 18: 133-40.10.1118/1.5966992046597Search in Google Scholar

Nangia S, Chufal KS, Arivazhagan V, Srinivas P, Tyagi A, Ghosh D. Compensator-based intensity-modulated radiotherapy in head and neck cancer: our experience in achieving dosimetric parameters and their clinical correlation. Clin Oncol. 2006; 18: 485-92.10.1016/j.clon.2006.03.01816909973Search in Google Scholar

Olch AJ. Dosimetric accuracy of the ITP inverse treatment planning system. Med Phys. 2002; 29: 2484-8.10.1118/1.151316212462712Search in Google Scholar

Olch AJ. Dosimetric performance of an enhanced dose range radiographic film for intensity-modulated radiation therapy quality assurance. Med Phys. 2002; 29: 2159-2168.10.1118/1.150039812349938Search in Google Scholar

Preiser K, Bortfeld T, Hartwig K, Schlegel W, Stein J. A new program for inverse radiotherapy planning. In: Proceeding of XII international conference on the use of computers in radiation therapy; Salt Lake City, Utah. 1997. p. 425-428.Search in Google Scholar

Salz H, Wiezorek T, Scheithauer M, et al. IMRT with compensators for head-and-neck cancers treatment technique, dosimetric accuracy, and practical experiences. Strahlenther Onkol. 2005; 181: 665-672.10.1007/s00066-005-1402-y16220406Search in Google Scholar

Yoda K, Aoki Y. A multiportal compensator system for IMRT delivery. Med Phys. 2003; 30: 880-886.10.1118/1.156785112772996Search in Google Scholar

eISSN:
1425-4689
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics