1. bookVolume 57 (2007): Edition 3 (September 2007)
Détails du magazine
Première parution
28 Feb 2007
4 fois par an
Accès libre

Physical mechanisms and methods employed in drug delivery to tumors

Publié en ligne: 18 Sep 2007
Volume & Edition: Volume 57 (2007) - Edition 3 (September 2007)
Pages: 249 - 268
Détails du magazine
Première parution
28 Feb 2007
4 fois par an

R. G. Fenton and D. I. Longo, Cell Biology of Cancer, in Harrison's Internal Medicine (Eds. A. S. Fauci, E. Braunwald, D. L. Kasper, S. L. Hauser, D. L. Longo and J. L. Jameson), 14th ed., Vol 1, McGraw Hill, New York 1998, pp. 505--511.Search in Google Scholar

J. L.-S. Au, S. H. Jang, J. Zheng, C.-T. Chen, S. Song, L. Hu and M. G. Wientjes, Determinants of drug delivery and transport to solid tumors, J. Control. Release74 (2001) 31--46; DOI: 10.1016/0168-3659(01)00308-2.Search in Google Scholar

H. Maeda and Y. Matsumura, Tumotropic and lymphotropic principles of macromolecular drugs, Crit. Rev. Ther. Drug Carrier Syst.6 (1989) 183--210.Search in Google Scholar

K. Ulbrich, T. Etrych, P. Chytil, M. Jelenkova and B. Rihova, HPMA copolymers with pH-controlled release of doxorubicin. In vitro cytotoxicity and antitumor activity, J. Control. Release87 (2003) 33--47; DOI: 10.1016/0168-3659(02)00348-6.Search in Google Scholar

Y. J. Son, J.-S. Jang, Y. W. Cho, H. Chung, R.-W. Park, I. C. Kwon, I.-S. Kim, J. Y. Park, S. B. Seo, C. R. Park and S. Y. Jeong, Biodistribution and antitumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect, J. Control. Release91 (2003) 135--145; DOI: 10.1016/0168-3659(03)00231-1.Search in Google Scholar

S. S. Dharap, B. Qui, G. C. Williams, P. Sinko, S. Stein and T. Minko, Molecular targeting of the drug delivery systems to ovarian cancer by BH3 and LHRH peptides, J. Control. Release91 (2003) 61--73; DOI: 10.1016/0168-3659(02)00209-8.Search in Google Scholar

Y. Sadzuka, R. Hirota and T. Sonobe, Interperitoneal administration of doxorubicin encapsulating liposomes against peritoneal dissemination, Toxicol. Lett.116 (2000) 51--59; DOI: 10.1016/0378-4274(00)00201-0.Search in Google Scholar

K. Greish, T. Sawa, J. Fang, T. Akaike and H. Maeda, MA-doxorubicin, a new polymeric micellar drug for effective targeting to solid tumors, J. Control. Release97 (2004) 219--230; DOI: 10.1016/j.conrel.2004.03.027.Search in Google Scholar

T. Nakanishi, S. Fukushima, K. Okamoto, M. Suzuki, Y. Matsumura, M. Yokoyama, T. Okano, Y. Sakurai and K. Kataoka, Development of the polymeric micelle carrier system for doxorubicin, J. Control. Release74 (2001) 295--302; DOI: 10.1016/0168-3659(01)00341-8.Search in Google Scholar

D. L. Garrec, M. Ranger and J. C. Leroux, Micelles in anticancer drug delivery, Am. J. Drug Deliv.2 (2004) 15--42; DOI: 10.1175.9038(04)0002-1.10.2165/00137696-200402010-00002Search in Google Scholar

T. Tamura, F. Fujita, M. Tanimoto, M. Koike, A. Suzuki, M. Fujita, Y. Horikiri, Y. Sakamoto, T. Suzuki and H. Yoshino, Antitumor effect of interperitoneal administration of cisplatin-loaded microspheres to human tumor xenografted nude mice, J. Control. Release80 (2002) 295--307; DOI: 10.1016/0168-3659(02)00003-2.Search in Google Scholar

J. S. Chawla and M. M. Amiji, Biodegradable poly(-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen, Int. J. Pharm.249 (2002) 127--138; DOI: 10.1016/0378-5173(02)00483-0.Search in Google Scholar

J. S. Chawla and M. M. Amiji, Cellular uptake and concentrations of tamoxifen upon administration in poly(-caprolactone) nanoparticles, AAPS PharmSci5 (2003) Article 3; DOI: 10.1208/ps050103.10.1208/ps050103Search in Google Scholar

C. Fonseca, S. Siomes and R. Gaspar, Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro antitumoral activity, J. Control. Release83 (2002) 273--286; DOI: 10.1016/0168-3659(02)00212-2.Search in Google Scholar

J. H. Poupaert and P. Couvreur, A computationally derived structural model of doxorubicin interacting with oligomeric polyalkylcyanoacrylate in nanoparticles, J. Control. Release92 (2003) 19--26; DOI: 10.1016/0168-3659(03)00177-9.Search in Google Scholar

L. H. Reddy, R. K. Sharma, K. Chuttani, A. K. Mishra and R. S. R. Murthy, Influence and administration route on tumor uptake and biodistribution of etoposide loaded tripalmitin nanoparticles in Dalton's lymphoma tumor bearing mice, J. Control. Release105 (2005) 185--198; DOI: 10.1016/j.conrel.2005.02.028.Search in Google Scholar

J. Williams, R. Lansdown, R. Sweitzer, M. Romanowski, R. Labell, R. Ramaswami and E. Unger, Nanoparticle drug delivery system for intravenous delivery of topoisomerase inhibitors, J. Control. Release91 (2003) 167--172; DOI: 10.1016/0168-3659(03)00241-4.Search in Google Scholar

W. Vogelhuber, T. Spruss, G. Bernhardt, A. Buschauer and A. Göpferich, Efficacy of BCNU and paclitaxel loaded subcutaneous implants in the interstitial chemotherapy of U-87 MG human glioblastoma xenografts, Int. J. Pharm.238 (2002) 111--121; DOI: 10.1016/0378-5173(02)00061-3.Search in Google Scholar

H. Maeda, K. Greish and J. Fang, The EPR Effect and Polymeric Drugs: A Paradigm Shift for Cancer Chemotherapy, in Polymer Therapeutics II: Polymers as Drugs, Conjugates and Gene Delivery Systems (Eds. R. Satchi-Fainaro and R. Duncan), Springer-Verlag, Berlin 2006, pp. 103--121.10.1007/12_026Search in Google Scholar

H. Maeda, J. Wu, T. Sawa, Y. Matsumura and K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics, J. Control. Release65 (2000) 271--284; DOI: 10.1016/0168-3659(99)00248-5.Search in Google Scholar

A. K. Iyer, G. Khaled, J. Fang and H. Maeda, Exploiting the enhanced permeability and retention effect for tumor targeting, Drug Discov. Today11 (2006) 812--818; DOI: 10.1016/j.drudis.2006. in Google Scholar

H. Maeda, T. Sawa and T. Kono, Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS, J. Control. Release74 (2001) 47--61; DOI: 10.1016/0168-3659(01)00309-1.Search in Google Scholar

B. A. Almond, A. R. Hadba, S. T. Freeman, B. J. Cuevas, A. M. York, C. J. Detrisac and E. P. Goldberg, Efficacy of mitoxantrone-loaded albinum microspheres for intratumoral chemotherapy of breast cancer, J. Control. Release91 (2003) 147--155; DOI: 10.1016/0168-3659(03)00214-1.Search in Google Scholar

E. S. Casper, D. P. Kelsen, N. W. Alcock and J. L. Lewis, IP cisplatin in patients with malignant ascites: pharmacokinetic evaluation and comparison with the iv route, Cancer Treat. Rev.67 (1983) 235--238.Search in Google Scholar

E. S. Lee, K. Na and Y. H. Bae, Polymeric micelle for tumor pH and folate mediated targeting, J. Control. Release91 (2003) 103--113; DOI: 10.1016/0168-3659(03)00239-6.Search in Google Scholar

P. V. Paranjpe, Y. Chen, V. Kholodovych, W. Welsh, S. Stein and P. J. Sinko, Tumor-targeted bioconjugate based delivery of camptothecin: design, synthesis and in vitro evaluation, J. Control. Release100 (2004) 275--292; DOI: 10.1016/j.conrel.2004.08.030.Search in Google Scholar

M. O. Oyewumi and R. J. Mumper, Influence of formulation parameters on gadolinium entrapment and tumor cell uptake using folate-coated nanoparticles, Int. J. Pharm.251 (2003) 85--97; DOI: 10.1016/0378-5173(02)00587-2.Search in Google Scholar

A. S. E. Ojugo, P. M. J. McSheehy, D. J. O. McIntyre, C. McCoy, M. Stubbs, M. O. Leach, I. R. Judson and J. R. Griffiths, Measurement of intracellular pH of solid tumors in mice by magnetic resonance spectroscopy: a comparison of exogenous 19F and 31P probes, NMR Biomed.12 (1999) 495--504; DOI: 10.1002/(SICI)1099-1492(1999)12:8.Search in Google Scholar

S. K. Han, K. Na and Y. H. Bae, Sulfonamide base pH-sensitive polymeric micelles: physicochemical characteristics and pH dependant aggregation, Colloid Surface A: Physicochem. Eng. Aspects214 (2003) 49--59; DOI: 10.1016/0927-7757(02)00389-8.Search in Google Scholar

K. Na, E. S. Lee and Y. H. Bae, Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH: pH dependant cell interaction, internalization and cytotoxicity in vitro, J. Control. Release87 (2003) 3--13; DOI: 10.1016/0168-3659(02)00345-0.Search in Google Scholar

C. Lackey, O. Press, A. Hoffman and P. Stayton, A biomimetic pH-responsive polymer directs endosomal release and intracellualar delivery of an endocytosed antibody complex, Bioconj. Chem.13 (2002) 996--1001; DOI: 10.1109/bioconchem.2002.844619.Search in Google Scholar

N. Murthy, J. Campbell, N. Fausto, A. S. Hoffman and P. S. Stayton, Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs, Bioconj. Chem.14 (2003) 412--419; DOI: 10.1109/bioconchem.2003.733726.Search in Google Scholar

K. Kataoka, G. S. Kwon, M. Yokoyama, T. Okano and Y. Sakurai, Block copolymer micelles as vehicles for drug delivery, J. Control. Release24 (1993) 119--132.Search in Google Scholar

A. Halperin and S. Alexander, Polymeric micelles: their relaxation kinetics, Macromol.22 (1989) 2403--2412.Search in Google Scholar

A. Rolland, J. O'Mullane, P. Goddard, L. Brookman and K. Petrak, New macromolecular carriers for drugs, J. Appl. Polym. Sci.44 (1992) 1195--1208.Search in Google Scholar

K. Kataoka, T. Matsumoto, M. Yokoyama, T. Okano, Y. Sakurai, S. Fukushima, K. Okamoto and G. S. Kwon, Doxorubicin-loaded poly(ethylene glycol)-poly(-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristic and biological significance, J. Control. Release64 (2000) 143--153; DOI: 10.1016/0168-3659(00)00133-9.Search in Google Scholar

G. S. Kwon and K. Kataoka, Block copolymer micelles as long circulating drug vehicles, Adv. Drug Deliv. Rev.16 (1995) 295--309.Search in Google Scholar

A. V. Kabanov and V. Alakhov, Micelles of Amphiphilic Block Copolymers as Vechicles for Drug Delivery, in Amphiphilic Block Copolymers: Self Assembly and Applications (Eds. P. Alexandridis and B. Lindman), Elsevier, Amsterdam 1997, pp. 134--148.Search in Google Scholar

P. Alexandridis and T. A. Hatton, Poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics and modeling, Colloids Surface A: Physicochem. Eng. Aspects96 (1995) 1--46; DOI: 10.1016/0927-7757(94)03028-1.Search in Google Scholar

N. Rapoport, Stabilization and activation of Pluronic micelles for tumor-targeted drug delivery, Colloid Surface B: Biointerfaces3 (1999) 93--111; DOI: 10.1517/17425247. in Google Scholar

G. Husseini, G. Myrup, W. Pitt, D. Christensen and N. Rapoport, Factors affecting acoustically triggered release of drugs from polymeric micelles, J. Control. Release69 (2000) 43-52; DOI: 10.1016/0168-3659(00)00278-9.Search in Google Scholar

N. Munshi, N. Rapoport and W. G. Pitt, Ultrasonic activated drug delivery from Pluronic P-105 micelles, Cancer Lett.118 (1997) 13--19; DOI: 10.1016/0304-3835(97)00218-8.Search in Google Scholar

A. Marin, M. Muniruzzaman and N. Rapoport, Mechanism of the ultrasonic activation of micellar drug delivery, J. Control. Release75 (2001) 69--81; DOI: 10.1016/0168-3659(01)00363-7.Search in Google Scholar

A. Marin, H. Sun, G. Husseini, W. Pitt, D. Christensen and N. Rapoport, Drug Delivery in Pluronic micelles: effect of high-frequency ultrasound on drug release from micelles and intracellular uptake, J. Control. Release84 (2002) 39--47; DOI: 10.1016/0168-3659(02)00262-6.Search in Google Scholar

N. Rapoport, A. Marin and D. Christensen, Ultrasound-activated micellar drug delivery, Drug Deliv. Systems Sci.2 (2002) 37--46.Search in Google Scholar

M. D. Bednarski, J. W. Lee, M. R. Callstrom and K. C. Li, In vivo target-specific delivery of macromolecular agents with MR-guaded focused ultrasound, Radiology204 (1997) 263--268; DOI: 10.1148/radiol.2381042078.10.1148/radiol.238104207816373769Search in Google Scholar

D. E. Tilley and W. Thumm, Physics for College Students (with the applications to the life sciences), Cummings Publishing Co., Menlo Park 1994.Search in Google Scholar

R. E. Apfel, Physical Acoustics, in Methods in Experimental Physics (Ed. P. D. Edmonts), Vol 19, Academic Press, New York 1981, pp. 356--413.Search in Google Scholar

J. Liu, T. N. Lewis and M. R. Prausnitz, Non-invasive assessment and control of ultrasound--mediated membrane permeabilization, Pharm. Res.15 (1988) 918--924.Search in Google Scholar

L. B. Feril, T. Kondo and Q. L. Zhao, Enhancement of ultrasound-induced apoptosis and cell lysis by echo contrast agents, Ultrasound Med. Biol.29 (2003) 331--337; DOI: 10.1016/0301-562(02)00700-7.Search in Google Scholar

V. Frenkel, A. Etherington, M. Greene, J. Quijano, J. W. Xie, F. Hunter, S. Dromi and K. C. P. Li, Delivery of liposomal doxorubicin in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure, Acad. Radiol.13 (2006) 469--479; DOI: 10.1016/j.acra.2005. in Google Scholar

N. M. Emanuel, G. N. Bogdanov and V. S. Orlov, Free-radical mechanisms in the cytotoxic action of antitumor antibiotics, Russian Chem. Rev.53 (1984) 1121--1138.Search in Google Scholar

N. Rapoport, W. G. Pitt, H. Sun and J. L. Nelson, Drug delivery in polymeric micelles: from in vitro to in vivo, J. Control. Release91 (2003) 85--95; DOI: 10.1016/0168-3659(03)00218-9.Search in Google Scholar

E. Bešić, K. Sanković, V. Gomzi and J. N. Herak, Sigma radicals in gamma-irradiated single crystals of 2-thiothymine, Phys. Chem. Chem. Phys.3 (2001) 2723--2725; DOI: 10.1039/6103210k.Search in Google Scholar

K. Sanković, E. Malinen, J. N. Herak, Z. Medunić and E. Sagstuen, Hole transfer in crystals of cytosyne monohydrate: an EPR study, Phys. Chem. Chem. Phys.5 (2003) 1665--1670; DOI: 10.1039/b211108j.10.1039/b211108jSearch in Google Scholar

D. Krilov, A. Lekić, E. Bešić and J. N. Herak, EPR study of a copper center in a single crystal of cytosine monohydrate, J. Inorg. Biochem.99 (2005) 886--889; DOI: 10.1016/j.inorgbio.2005.01.001.Search in Google Scholar

E. Bešić, V. Gomzi, K. Sanković, J. N. Herak and D. Krilov, EPR study of a copper impurity center in a single crystal of 2-thiothymine, Spectrochim. Acta A61 (2005) 2803--2808; DOI: 10.1016/j.saa.2004. in Google Scholar

M. Gabričević, E. Bešić, M. Biruš, A. Zahl and R. Van Eldik, Oxidation of hydroxyurea with oxovanadium(V) ions in acidic aqueous solution, J. Inorg. Biochem.100 (2006) 1606--1613; DOI: 10.1016/j.inorgbio.2006.05.008.Search in Google Scholar

B. Nigović, N. Kujundžić and K. Sanković, Electron transfer in N-hydroxyurea complexes with iron(III), Eur. J. Med. Chem.40 (2005) 51--55; DOI: 10.1016/j.ejmech.2004. in Google Scholar

N. Rapoport, J. N. Heron, W. G. Pitt and L. Pitina, Micellar delivery of doxorubicin and its paramagnetic analog, ruboxyl, to HL-60 cells: effect of micelle structure and ultrasound in the intracellular drug uptake, J. Control. Release58 (1999) 153--162; DOI: 10.1016/0168-3659(98)00149-7.Search in Google Scholar

V. Mišik and P. Riesz, Recent application of EPR and spin trapping to sonochemical studies of organic liquids and aqueous solutions, Ultrasonic Sonochem.3 (1996) 173--186; DOI: 10.1016/1350-4177(96)00023-5.Search in Google Scholar

V. Mišik and P. Riesz, EPR characterization of free radical intermediates formed during ultrasound exposure of cell culture media, Free Radical Biol. Med.26 (1999) 936--943; DOI: 10.1016/0891-5849(98)00282-2.Search in Google Scholar

T. Yu, J. Bai, K. Hu and Z. Wang, The effect of free radical scavenger and antioxidant on the increase in intracellular adriamycin accumulation induced by ultrasound, Ultrasonic Sonochem.10 (2003) 33--35; DOI: 10.1016/1359-4177(02)00105-0.Search in Google Scholar

C. X. Deng, F. Sieling, H. Pan and J. Cui, Ultrasound-induced cell membrane porosity, Ultrasound Med. Biol.30 (2004) 519--526; DOI: 10.1016/j.ultramedbio.2004.01.005.Search in Google Scholar

P. H. Zhou, Y. Izadnegahdar, J. M. Cui and C. X. Deng, Study of sonoporation dynamics affected by ultrasound duty cycle, Ultrasound Med. Biol.31 (2005) 849--856; DOI: 10.1016/j.ultra medbio.2005.03.014.Search in Google Scholar

M. De Cuyper and M. Joniau, Magnetoliposomes: formation and structural characterization, Eur. Biophys. J.15 (1988) 311--319.Search in Google Scholar

A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch and R. Felix, Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia, J. Magn. Magn. Mater.225 (2001) 118--126; DOI: 10.1016/0304-8853(01)01239-7.Search in Google Scholar

A. Jordan, P. Wust, R. Scholz, B. Tesche, H. Fahling, T. Mitrovics, T. Vogl, J. Cervos-Navarro and R. Felix, Cellular uptake of magnetic fluid particles and their effect on human adenocarcinoma cells exposed to AC magnetic fields in vitro, Int. J. Hyperther.12 (1996) 705--722; DOI: 10.1080/765134545521.Search in Google Scholar

M. Babincova, V. Altanerova, M. Lampert, C. Altaner, E. Machova, M. Sramka and P. Babinec, Site-specific in vivo targeting of magnetoliposomes using externally applied magnetic field, Z. Naturforsch55 (2000) 278--281; DOI: 10.1089/109662002760178159.10.1089/109662002760178159Search in Google Scholar

J. Q. Zhang, Z. R. Zhang, H. Yang, Q. Y. Tan, S. R. Qin and X. L. Qiu, Lyophilized paclitaxel magnetoliposomes as a potential drug delivery system for breast carcinoma via parental administration: in vitro and in vivo studies, Pharm. Res.22 (2005) 573--583; DOI: 10.1007/s11095-005-2496-8.10.1007/s11095-005-2496-8Search in Google Scholar

M. Babincova, P. Cicmanec, V. Altanerova, C. Altaner and P. Babinec, AC-magnetic field controlled drug release from magnetoliposomes: design of a method for site-specific chemotherapy, Bioelectrochemistry55 (2002) 1--19; DOI: 10.1016/s1567-5394(01)00166-9.10.1016/S1567-5394(01)00166-9Search in Google Scholar

T. Kubo, T. Sugita, S. Shimose, Y. Niita, Y. Ikuta and T. Murakami, Targeted delivery of anticancer drugs with intravenously administrated magnetic liposomes in osteosarcoma-bearing hamsters, Int. J. Oncol.17 (2000) 309--315; DOI: 10.1111/j.1525-1438.2000.00168.Search in Google Scholar

M. Kullberg, K. Mann and J. L. Owens, Improved drug delivery to cancer cells: a method using magnetoliposomes that target epidermal growth factor receptors, Med. Hypotheses64 (2005) 468--470; DOI: 10.1016/j.mehy.2004. in Google Scholar

K. Y. Ng, C. W. Cho, T. K. Henthorn and R. L. Tanguay, Effect of heat preconditioning on the uptake and permeability of R123 in brain microvessel endothelial cells during mild heat treatment, J. Pharm. Sci.93 (2004) 896--907; DOI: 10.1002/jps.20015.10.1002/jps.20015Search in Google Scholar

K. Trieb, A. Sztankay, A. Amberger, H. Lechner and B. Grubeckloebenstein, Hyperthermia inhibits profileration and stimulates the expression of differentiation markers in cultured thyroid carcinoma cells, Cancer Lett.87 (1994) 65--71; DOI: 10.1016/0304-3835(94)90410-3.10.1016/0304-3835(94)90410-3Search in Google Scholar

K. M. Sekins, D. B. Leeper, J. K. Hoffman, M. R. Wolfson and T. H. Shaffer, Feasibility of lung cancer hyperthermia using breathable perfluorochemical (PFC) liquids. Part I: Convective hyperthermia, Int. J. Hyperthermia20 (2004) 252--277; DOI: 10.1080/02656730310001605537.10.1080/0265673031000160553715204525Search in Google Scholar

B. Guo, L. Z. Xu and J. Li, Time reversal based microwave hyperthermia treatment of breast cancer, Microwave Opt. Techn. Lett.47 (2005) 335--338; DOI: 10.1002/mop.1378.10.1002/mop.1378Search in Google Scholar

S. Ahmed, B. Lindsey and J. Davies, Emerging minimally invasive techniques for treating localized prostate cancer, BJU Int.96 (2005) 1230--1234; DOI: 10.1111/j.1464-4100.2005.05742.Search in Google Scholar

H. Sakurai, K. Hayakawa, N. Mitsuhashi, Y. Tamaki, Y. Nakayama, H. Kurosaki, S. Nasu, H. Ishikawa, J. I. Saitoh, T. Akimoto and H. Niibe, Effect of hyperthermia combined with external radiation therapy in primary non-small cell lung cancer with direct bony invasion, Int. J. Hyperther.18 (2002) 472--483; DOI: 10.1080/02656730210146917.10.1080/0265673021014691712227932Search in Google Scholar

M. D. Sherar, J. Trachtenberg, S. R. H. Davidson, C. McCann, C. K. K. Yue, M. A. Haider and M. R. Gertner, Interstitial microwave thermal therapy for prostate cancer, J. Endourol.17 (2003) 617--625; DOI: 10.1111/j.1464-4100.2003.05848.Search in Google Scholar

P. R. Stauffer, Evolving technology for thermal therapy of cancer, Int. J. Hyperthermia21 (2005) 731--744; DOI: 10.1080/02656730500331868.10.1080/0265673050033186816338856Search in Google Scholar

I. Hilger, E. Dietmar, W. Linss, S. Streck and W. A. Kaiser, Developments for the minimally invasive treatment of tumors by targeted magnetic heating, J. Phys. Condens. Matt.18 (2006) 2951--2958; DOI: 10.1080/0953-8984/18/38/28.Search in Google Scholar

M. Johannsen, B. Thiesen, A. Jordan, K. Taymoorian, U. Gneveckow, N. Waldofner, R. Scholz, M. Koch, M. Lein, K. Jung and S. A. Loening, Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic Dunning R3327 rat model, Prostate64 (2005) 283--292; DOI: 10.1002/pros.20213.10.1002/pros.2021315726645Search in Google Scholar

T. N. Brusentsova, N. A. Brusentsov, V. D. Kuznetsov and V. N. Nikiforov, Synthesis and investigation of magnetic properties of Gd-substituded Mn-Zn ferrite nanoparticles as a potential low-T-C agent for magnetic fluid hyperthermia, J. Magn. Magn. Mater.293 (2005) 298--302; DOI: 10.1016/j.jmmm.2005. in Google Scholar

T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann and B. Rechenberg, Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater.293 (2005) 483--496; DOI: 10.1016/j.jmmm.2005. in Google Scholar

S. Y. Yan, D. S. Zhang, N. Gu, J. Zheng, A. W. Ding, Z. Y. Wang, B. L. Ying, M. Ma and Y. Zhang, Therapeutic effect of Fe2O3 nanoparticles combined with magnetic fluid hyperthermia on cultured liver cancer cells and xenograft liver cancers, J. Nanosci. Nanotechnol.5 (2005) 1185--1192; DOI: 10.1116/jnn.2005.219.Search in Google Scholar

O. Dudeck, K. Bogusiewicz, J. Pinkernelle, G. Graffke, M. Pech, G. Wieners, H. Bruhn, A. Jordan and J. Ricke, Local arterial infusion of superparamagnetic iron oxide particles in hepatocellular carcinoma — feasibility and 3.0 T MRI study, Invest. Radiol.41 (2006) 527--535; DOI: 10.1097/01.rli.0000209601.15533.5a.10.1097/01.rli.0000209601.15533.5a16763472Search in Google Scholar

M. Johannsen, B. Thiesen, U. Gneveckow, K. Taymoorian, N. Waldofner, R. Scholz, S. Deger, K. Jung, S. A. Loening and A. Jordan, Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer, Prostate66 (2006) 97--104; DOI: 10.1002/pros.20316.10.1002/pros.20316273234716114062Search in Google Scholar

M. Johannsen, U. Gneveckow, L. Eckelt, A. Feussner, N. Waldofner, R. Scholz, S. Deger, P. Wust, S. A. Loening and A. Jordan, Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique, Int. J. Hyperther.21 (2005) 637--647; DOI: 10.1080/02656730500158360.10.1080/0265673050015836016304715Search in Google Scholar

M. Belehradek, C. Domenge, B. Luboinski, S. Orlowski, J. Belehradek and L. M. Mir, Electrochemotherapy, a new anti-tumor treatment: first clinical phase I-II trial report, Cancer72 (1993) 3694--3700; DOI: 10.1002/0305-7372(93)00073-2.Search in Google Scholar

J. Teissie and M. P. Rols, Time Course of Electropermeabilization, in Charge and Field Effects in Biosystems (Eds. M. J. Allen, S. F. Cleary, A. E. Sowers and D. Shillady), Vol. 3, Birkhauser, Boston 1992, pp. 285--301.10.1007/978-1-4615-9837-4_24Search in Google Scholar

A. Gothelf, L. M. Mir and J. Gehl, Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation, Cancer Treat. Rev.29 (2003) 371--387; DOI: 10.1016/0305-7372(03)00073-2.Search in Google Scholar

S. Orlowski, J. Belehradek, C. Paoletti and L. M. Mir, Transient electropermeabilization of cell in culture: increase of the cytotoxicity of anticancer drugs, Biochem. Pharmacol.37 (1988) 4727--4733.Search in Google Scholar

J. Gehl, T. Skovsgaard and L. M. Mir, Enhancement of cytotoxicity by electropermeabilization: an improved method for screening drugs, Anti-cancer Drug9 (1998) 319--325.10.1097/00001813-199804000-000059635922Search in Google Scholar

M. J. Jaroszeski, R. Gilbert, R. Perrott and R. Heller, Enhanced effects of multiple treatment electrochemotherapy, Melanoma Res.6 (1999) 427--433; DOI: 10.1097/0305737203000732.Search in Google Scholar

C. Domenge, S. Orlowski, B. Luboinski, T. DeBaere, G. Schwaab, J. Belehradek and L. M. Mir, Antitumor electrochemotherapy, Cancer77 (1996) 956--963; DOI: 10.1002(SICI)1097-0142 (19960301) 77:5.Search in Google Scholar

O. Tounekti, G. Pron, J. Belehradek and L. M. Mir, Bleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized, Cancer Res.53 (1993) 5462--5469; DOI: 10.1158/5472(93)7693342.019.Search in Google Scholar

D. W. Jordan, M. D. Uhler, R. M. Gigenbach and Y. Y. Lau, Enhancement of cancer chemotherapy by intense ultrawideband electric field pulses, J. Appl. Phys.99 (2006) 94701--94706; DOI: 10.1063/1.2195421.10.1063/1.2195421Search in Google Scholar

C. M. Byrne, J. F. Thompson, H. Johnston, P. Hersey, M. J. Quinn, T. M. Hughes and W. H. McCarthy, Treatment of metastatic melanoma using electroporation therapy with bleomycin, Melanoma Res.15 (2005) 45--51; DOI: 10.1097/00008390-200502000-000008.Search in Google Scholar

G. Sersa, T. Cufer, M. Cemezar, M. Rebersek and R. Zvonimir, Electrochemotherapy with bleomycin in the treatment of hypernephroma metastasis, Tumori86 (2006) 163--165.Search in Google Scholar

J. Larkin, D. Soden, C. Collins, M. Tangney, J. M. Preston, L. J. Russell, A. P. McHale, C. Dunne and G. C. O'Sullivan, Combined electric field and ultrasound therapy as a novel antitumor treatment, Eur. J. Cancer41 (2005) 1339--1348; DOI: 10.1016/j.ejca.2005. in Google Scholar

A. M. R. Haro, A. Smyth, P. Hughes, C. N. Reid and A. P. McHale, Electro-sensitation of mammalian cells and tissues to ultrasound: a novel treatment modality, Cancer Lett.222 (2005) 49--55; DOI: 10.1016/j.canlet.2004. in Google Scholar

J. F. Kolb, S. Kono and K. H. Schoenbach, Nanosecond pulsed electric field generators for the study of subcellular effects, Bioelectromagn.27 (2006) 172--187; DOI: 10.1002/bem.20185.10.1002/bem.2018516304697Search in Google Scholar

R. Nuccitelli, U. Pliquett, X. H. Chen, W. Ford, R. J. Swanson, S. J. Beebe, J. F. Kolb and K. H. Schoenbach, Nanosecond pulsed electric fields cause melanomas to self-destruct, Biochem. Biophys. Res. Comm.343 (2006) 351--360; DOI: 10.1016/j.bbrc.2006. in Google Scholar

R. Giardino, M. Fini, V. Bonazzi, R. Cadossi, A. Nicolini and A. Carpi, Electrochemotherapy, a novel approach to the treatment of metastatic nodules on the skin and subcutaneous tissues. Biomed. Pharmacother.60 (2006) 458--462; DOI: 10.1111/j.1600-0846.2006.00100.Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo