Accès libre

Fault Detection and Isolation with Robust Principal Component Analysis

, ,  et   
30 déc. 2008
À propos de cet article

Citez
Télécharger la couverture

Chiang L. H. and Colegrove L. F. (2007). Industrial implementation of on-line multivariate quality control, Chemometrics and Intelligent Laboratory Systems 88(2): 143-153.10.1016/j.chemolab.2007.02.005Search in Google Scholar

Croux C., Filzmoser P. and Oliveira M. (2007). Algorithms for projection-pursuit robust principal component analysis, Chemometrics and Intelligent Laboratory Systems 87(2): 218-225.10.1016/j.chemolab.2007.01.004Search in Google Scholar

Croux C. and Ruiz-Gazen A. (2005). High breakdown estimators for principal components: The projection-pursuit approach revisited, Journal of Multivariate Analysis 95(1): 206-226.10.1016/j.jmva.2004.08.002Search in Google Scholar

Dunia R. and Qin S. (1998). A subspace approach to multidimensional fault identification and reconstruction, American Institute of Chemical Engineers Journal 44 (8): 1813-1831.10.1002/aic.690440812Search in Google Scholar

Harkat M.-F., Mourot G. and Ragot J. (2006). An improved PCA scheme for sensor FDI: Application to an air quality monitoring network, Journal of Process Control 16(6): 625-634.10.1016/j.jprocont.2005.09.007Search in Google Scholar

Hubert M., Rousseeuw P. and Van den Branden K. (2005). RobPCA: A new approach to robust principal component analysis, Technometrics 47 (1): 64-79.10.1198/004017004000000563Search in Google Scholar

Hubert M., Rousseeuw P. and Verboven S. (2002). A fast method for robust principal components with applications to chemometrics, Chemometrics and Intelligent Laboratory Systems 60(1-2): 101-111.10.1016/S0169-7439(01)00188-5Search in Google Scholar

Jackson J. and Mudholkar G. S. (1979). Control procedures for residuals associated with principal component analysis, Technometrics 21(3): 341-349.10.1080/00401706.1979.10489779Search in Google Scholar

Kano M. and Nakagawa Y. (2008). Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry, Computers & Chemical Engineering 32(1-2): 12-24.10.1016/j.compchemeng.2007.07.005Search in Google Scholar

Li G. and Chen Z. (1985). Projection-pursuit approach to robust dispersion matrices and principal components: Primary theory and Monte Carlo, Journal of the American Statistical Association 80(391): 759-766.10.1080/01621459.1985.10478181Search in Google Scholar

Li W. and Qin S. J. (2001). Consistent dynamic PCA based on errors-in-variables subspace identification, Journal of Process Control 11(6): 661-678.10.1016/S0959-1524(00)00041-XSearch in Google Scholar

Maronna R. A., Martin R. and Yohai V. J. (2006). Robust Statistics: Theory and Methods, Wiley, New York, NY.10.1002/0470010940Search in Google Scholar

Qin S. J. (2003). Statistical process monitoring: Basics and beyond, Journal of Chemometrics 17(8-9): 480-502.10.1002/cem.800Search in Google Scholar

Rousseeuw P. (1987). Robust Regression and Outliers Detection, Wiley, New York, NY.10.1002/0471725382Search in Google Scholar

Rousseeuw P. and Van Driessen K. (1999). Fast algorithm for the minimum covariance determinant estimator, Technometrics 41(3): 212-223.10.1080/00401706.1999.10485670Search in Google Scholar

Ruiz-Gazen A. (1996). A very simple robust estimator of a dispersion matrix, Computational Statistics and Data Analysis 21(2): 149-162.10.1016/0167-9473(95)00009-7Search in Google Scholar

Yue H. and Qin S. (2001). Reconstruction-based fault identification using a combined index, Industrial and Engineering Chemistry Research 40(20): 4403-4414.10.1021/ie000141+Search in Google Scholar

Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Mathématiques, Mathématiques appliquées