International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Scientific Computation for Fluid Mechanics and Hyperbolic Systems (special issue), Jan Sokołowski and Eric Sonnendrücker (Eds.)
À propos de cet article

Chevalier P. and Nataf F. (1998): Symmetrized method with optimized second-order conditions for the Helmholtz equation.Contemporary Mathematics, Vol. 218, pp. 400-407.10.1090/conm/218/03035Search in Google Scholar

Gander M.J. (2006): Optimized Schwarz methods.SIAM Journal on Numerical Analysis, Vol. 44, No. 2, pp. 699-731.10.1137/S0036142903425409Search in Google Scholar

Japhet C. (1998): Optimized Krylov-Ventcell method. Application to convection-diffusion problems. Proceedings of the 9th International Conference Domain Decomposition Methods, Bergen, Norway, pp. 382-389.Search in Google Scholar

Le Tallec P. (1994): Domain decomposition methods in computational mechanics, In: Computational Mechanics Advances, (J. Tinsley Oden, Ed.). North-Holland, Amsterdam, Vol. 1, No. 2, pp. 121-220.Search in Google Scholar

Lions P.-L. (1988): On the Schwarz alternating method. I. Proceedings of the 1st International Symposium Domain Decomposition Methods for Partial Differential Equations, Philadelphia, PA: SIAM, pp. 1-42.Search in Google Scholar

Lions P.-L. (1990): On the Schwarz alternating method. III: A variant for nonoverlapping subdomains. Proceedings of the 3rd International Symposium Domain Decomposition Methods for Partial Differential Equations, Philadelphia, PA: SIAM, pp. 202-223.Search in Google Scholar

Magoulès F., Iványi P. and Topping B.H.V. (2004a): Nonoverlapping Schwarz methods with optimized transmission conditions for the Helmholtz equation.Computer Methods in Applied Mechanics and Engineering, Vol. 193, No. 45-47, pp. 4797-4818.10.1016/j.cma.2004.05.004Search in Google Scholar

Magoulès F., Roux F.-X. and Salmon S. (2004b): Optimal discrete transmission conditions for a non-overlapping domain decomposition method for the Helmholtz equation.SIAM Journal on Scientific Computing, Vol. 25, No. 5, pp. 1497-1515.10.1137/S1064827502415351Search in Google Scholar

Magoulès F., Roux F.-X. and Series L. (2005): Algebraic way to derive absorbing boundary conditions for the Helmholtz equation.Journal of Computational Acoustics, Vol. 13, No. 3, pp. 433-454.10.1142/S0218396X05002827Search in Google Scholar

Magoulès F., Roux F.-X. and Series L. (2006): Algebraic approximation of Dirichlet-to-Neumann maps for the equations of linear elasticity.Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 29-32, pp. 3742-3759.10.1016/j.cma.2005.01.022Search in Google Scholar

Quarteroni A. and Valli A. (1999): Domain Decomposition Methods for Partial Differential Equations. Oxford: Oxford University Press.10.1007/978-94-011-4647-0_11Search in Google Scholar

Saad Y. (1996): Iterative Methods for Linear Systems. Boston: PWS Publishing.Search in Google Scholar

Schwarz H. (1870): Über einen Grenzübergang durch alternierendes Verfahren.Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, Vol. 15, pp. 272-286.Search in Google Scholar

Smith B., Bjorstad P. and Gropp W. (1996): Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge: Cambridge University Press.Search in Google Scholar

Toselli A. and Widlund O.B. (2004): Domain Decomposition Methods: Algorithms and Theory. Berlin: Springer.10.1007/b137868Search in Google Scholar

ISSN:
1641-876X
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Mathematics, Applied Mathematics