Accès libre

Sets of Bounded Remainder for The Billiard on A Square

 et   
25 janv. 2019
À propos de cet article

Citez
Télécharger la couverture

We study sets of bounded remainder for the billiard on the unit square. In particular, we note that every convex set S whose boundary is twice continuously differentiable with positive curvature at every point, is a bounded remainder set for almost all starting angles a and every starting point x. We show that this assertion for a large class of sets does not hold for all irrational starting angles α.