Accès libre

Trans-Caspian International Transport Route Infrastructure Assessment Using Simulation Modelling

À propos de cet article

Citez

Amorim, G. A., Lopes, L. A. S. and Silva Junior, O. S. (2020) Discrete event-based railway simulation model for eco-efficiency evaluation. International Journal of Simulation Modelling, 19(3), 375–386. Available: https://doi.org/10.2507/IJSIMM19-3-517. Search in Google Scholar

CAREC. (2017) Unlocking the potential of railways: A railway strategy for CAREC, 2017–2030. Mandaluyong City, Philippines: Asian Development Bank, 2017. Available: http://dx.doi.org/10.22617/RPT178656-2. Search in Google Scholar

CAREC. (2021) Railway sector assessment for Republic of Kazakhstan. Central Asia Regional Economic Cooperation (CAREC), ADB, 2021. Available: https://www.carecprogram.org/uploads/CAREC-CRA-KAZ_7th_4MAR2021_WEB.pdf. Search in Google Scholar

Cui, Y., and Martin, U. (2011) Multi-scale simulation in railway planning and operation. PROMET – Traffic & Transportation, 23(6), 511–517. Available: https://hrcak.srce.hr/file/122067. Search in Google Scholar

Cui, Y., Martin, U. and Liang, J. (2018) PULSim: User-based adaptable simulation tool for railway planning and operations. Journal of Advanced Transportation, Volume 2018, Article ID 7284815. Available: http://dx.doi.org/10.1155/2018/7284815. Search in Google Scholar

Divis, R. and Kavicka., A. (2014) Train movement dynamics within Anylogic tool. In: Proceedings of the 26th European Modeling and Simulation Symposium, EMSS2014, 307–312. Available: https://www.msc-les.org/proceedings/emss/2014/EMSS2014_307.pdf. Search in Google Scholar

Johansson, I., Palmqvist, C.-W., Sipilä, H., Warg, J., and Bohlin, M. (2022) Microscopic and macroscopic simulation of early freight train departures. Journal of Rail Transport Planning & Management, 21, 100295. Available: https://doi.org/10.1016/j.jrtpm.2022.100295. Search in Google Scholar

Kotenko, A. G., Sattorov, S. B., Nehoroshkov, V. P., and Timuhin, K. M. (2021) Model for forecasting the dynamics and growth of the throughput of the Central Asian transport corridor lines. Journal of Physics: Conference Series, 2131, 032102. Available: doi:10.1088/1742-6596/2131/3/032102. Search in Google Scholar

Krugman, P. (1991) Increasing returns and economic geography. Journal of Political Economy, 99(3), 483–499. Available: pr.princeton.edu/pictures/g-k/krugman/krugman-increasing_returns_1991.pdf. Search in Google Scholar

Kumagai, S., Tsubota, K., and Gokan. T. (2021) Corridor developments for transforming Central Asia: a spatial computable general equilibrium model. Unlocking Transport Connectivity in the Trans-Caspian Region, edited by D. Azhgaliyeva and Y. Kalyuzhnova. Chapter 7, Tokyo, ADBI, 166-186. Available: https://www.adb.org/publications/unlocking-transport-connectivity-trans-caspian-corridor. Search in Google Scholar

Michal, G., Huynh, N., Shukla, N., Munoz, A., and Barthelemy, J. (2017) RailNet: A simulation model for operational planning of rail freight. Transportation Research Procedia, 25, 461–473. Available: https://doi.org/10.1016/j.trpro.2017.05.426. Search in Google Scholar

Moeinaddini, A., Shafahi, Y., and Mohammadhasani, R. (2017) A simulation model for train movements in the rail network. In: Proceedings of the Institution of Civil Engineers – Transport, 172(3), 152–163. Available: https://www.icevirtuallibrary.com/doi/abs/10.1680/jtran.16.00082. Search in Google Scholar

Nash, A., and Huerlimann, D. (2004) Railroad simulation using OpenTrack. Computers in Railways IX, 74, 45–54. Available: https://www.witpress.com/elibrary/wit-transactions-on-the-built-environment/74/12035. Search in Google Scholar

Radtke, A., and Hauptmann, D. (2004) Automated planning of timetables in large railway networks using a microscopic data basis and railway simulation techniques. Computers in Railways IX, 74, 615–625. Available: https://www.witpress.com/elibrary/wit-transactions-on-the-built-environment/74/12091. Search in Google Scholar

Široký, J., Nachtigall, P., Tischer, E., and Gašparík, J. (2021) Simulation of railway lines with a simplified interlocking system. Sustainability, 13, 1394. Available: https://doi.org/10.3390/su13031394. Search in Google Scholar

Tischer, E., Nachtigall, P., and Široký, J. (2020) The use of simulation modelling for determining the capacity of railway lines in the Czech conditions. Open Engineering, 10(1), 224–231. Available: https://doi.org/10.1515/eng-2020-0026. Search in Google Scholar

Tolujew, J., Yatskiv, I., Jackson I., and Reggelin, T. (2018) Dynamic model of the passenger flow on Rail Baltica. In: Proceedings of the 2018 Winter Simulation Conference, M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson (eds.). IEEE Press, 3096-3107. Available: doi:10.1109/WSC.2018.8632549. Search in Google Scholar

Watanabe, D., Shibasaki, R., and Arai, H. (2021) Logistics policy analysis and network model simulation for cross-border transport in the Trans-Caspian transport corridor: the global intermodal logistics network simulation model. Unlocking Transport Connectivity in the Trans-Caspian Region, edited by D. Azhgaliyeva and Y. Kalyuzhnova. Chapter 8, Tokyo, ADBI, 187–206. Available: https://www.adb.org/publications/unlocking-transport-connectivity-trans-caspian-corridor. Search in Google Scholar

Zinser, M., Betz, T., Becker, M., Geilke, M., Terschlüsen, C., Kaluza, A., Johansson, I., and Warg, J. (2019) PRISM: A macroscopic Monte Carlo railway simulation. In: Proceedings of 12th World Congress on Railway Research (WCRR), Tokyo, Japan. Available: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1475375&dswid=-5154 Search in Google Scholar

eISSN:
1407-6179
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other