1. bookVolume 79 (2021): Edition 2 (December 2021)
Détails du magazine
License
Format
Magazine
eISSN
1338-9750
Première parution
12 Nov 2012
Périodicité
3 fois par an
Langues
Anglais
access type Accès libre

Two Non Algebraic Limit Cycles of a Class of Polynomial Differential Systems with Non-Elementary Equilibrium Point

Publié en ligne: 01 Jan 2022
Volume & Edition: Volume 79 (2021) - Edition 2 (December 2021)
Pages: 33 - 46
Reçu: 13 Nov 2020
Détails du magazine
License
Format
Magazine
eISSN
1338-9750
Première parution
12 Nov 2012
Périodicité
3 fois par an
Langues
Anglais
Abstract

The problems of existence of limit cycles and their numbers are the most difficult problems in the dynamical planar systems. In this paper, we study the limit cycles for a family of polynomial differential systems of degree 6k + 1, k ∈ ℕ*, with the non-elementary singular point. Under some suitable conditions, we show our system exhibiting two non algebraic or two algebraic limit cycles explicitly given. To illustrate our results we present some examples.

Keywords

[1] AL-DOSARY, K. I. T.: Non-algebraic limit cycles for parametrized planar polynomial systems, Internat. J. Math, 18 (2007), no. 2, 179–189. Search in Google Scholar

[2] BENDJEDDOU, A.—BERBACHE, A.—CHEURFA, R.: Exact algebraic and non- -algebraic limit cycles for a class of integrable quintic and planar polynomial differential systems, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N. S.) Tomul 64 (2018), no. 2. 253–259. Search in Google Scholar

[3] BENDJEDDOU, A.—BERBACHE, A.: A class of differential system of odd degree with explicit non algebraic limit cycle, Int. Electron. J. Pure Appl. Math. 9 (2015), no. 4, 243–254. Search in Google Scholar

[4] BENDJEDDOU, A.—CHEURFA, R.: Coexistence of algebraic and non-algebraic limit cycles for quintic Polynomial differential systems, Electron. J. Differential Equations 2017, Paper no. 71, 7 pp. Search in Google Scholar

[5] BERBACHE, A.—BENDJEDDOU, A.: Three explicit non-algebraic limit cycles for a class of polynomial differential systems, Appl. Math. E-Notes 20 (2020), 158–166. Search in Google Scholar

[6] CAIRÓ, L.—LLIBRE, J.: Phase portraits of cubic polynomial vector fields of Lotka- Volterra type having a rational first integral of egree 2, J. Phys. A 40 (2007), no. 24, 6329–6348. Search in Google Scholar

[7] CHAVARRIGA, J.—GIACOMINI, H.— GINÉ, J.— LLIBRE, J.: Darboux integrability and the inverse integrating factor, J. Differential Equations 194 (2003), 116–139.10.1016/S0022-0396(03)00190-6 Search in Google Scholar

[8] FERRAGUT, A.—LLIBRE, J.—MAHD, A.: Liouvillian first integrals of differential equations, Trans. Amer. Math. Soc. 333 (1992), no. 2, 673–688. Search in Google Scholar

[9] GASULL, A.—GIACOMINI, H.—TORREGROS, J.: Explicit non-algebraic limit cycles for polynomial systems, J. Comp. and Appl. Math. 200 (2007), 448–457.10.1016/j.cam.2006.01.003 Search in Google Scholar

[10] GINÉ, J.—GRAU, M.: Coexistence of algebraic and non-algebraic limit cycles, explicitly given, using Riccati equations, Nonlinearity 19 (2006), 1939–1950.10.1088/0951-7715/19/8/009 Search in Google Scholar

[11] HILBERT, D.: Mathematische Problem (lecture), In: Second International Congress Math. Paris, 1900, Nachr. Ges. Wiss. Gottingen Math-Phys. Kl. Vol. 1900, pp. 253–297. Search in Google Scholar

[12] MOULIN, J. O.: About a conjecture on quadratic vector fields, J. Pure Appl. Algebra 165 (2001), 227–234.10.1016/S0022-4049(00)00177-8 Search in Google Scholar

[13] MOULIN, J. O.: Simple Darboux points of polynomial planar vector fields, J. Pure Appl. Algebra 189 (2004), 247–262.10.1016/j.jpaa.2003.10.027 Search in Google Scholar

[14] ODANI, K.: The limit cycle of the van der Pol equation is not algebraic, J. Differential Equations 115 (1995), 146–152.10.1006/jdeq.1995.1008 Search in Google Scholar

[15] VAN DER POOL, B.: On relaxation-oscillations, Philos. Mag. VII. Ser. 2 (1926), 978–992.10.1080/14786442608564127 Search in Google Scholar

[16] PERKO, L.: Differential Equations and Dynamical Systems (3rd edition). In: Texts in Appl. Math. Vol. 7, Springer-Verlag, New York, 2001.10.1007/978-1-4613-0003-8 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo