Accès libre

On Functions of Bounded (φ, k)-Variation

, , ,  et   
15 nov. 2019
À propos de cet article

Citez
Télécharger la couverture

Given a φ-function φ and k ∈ ℕ, we introduce and study the concept of (φ, k)-variation in the sense of Riesz of a real function on a compact interval. We show that a function u :[a, b] ℝ has a bounded (φ, k)-variation if and only if u(k−1) is absolutely continuous on [a, b]and u(k) belongs to the Orlicz class L φ[a, b]. We also show that the space generated by this class of functions is a Banach space. Our approach simultaneously generalizes the concepts of the Riesz φ-variation, the de la Vallée Poussin second-variation and the Popoviciu kth variation.

Langue:
Anglais
Périodicité:
3 fois par an
Sujets de la revue:
Mathématiques, Mathématiques générales