Accès libre

The Zariski Topology on the Graded Primary Spectrum Over Graded Commutative Rings

 et   
15 nov. 2019
À propos de cet article

Citez
Télécharger la couverture

Let G be a group with identity e and let R be a G-graded ring. A proper graded ideal P of R is called a graded primary ideal if whenever rgsh∈P, we have rg∈ P or sh∈ Gr(P), where rg,sg∈ h(R). The graded primary spectrum p.Specg(R) is defined to be the set of all graded primary ideals of R.In this paper, we define a topology on p.Specg(R), called Zariski topology, which is analogous to that for Specg(R), and investigate several properties of the topology.

Langue:
Anglais
Périodicité:
3 fois par an
Sujets de la revue:
Mathématiques, Mathématiques générales