Accès libre

Numerical Simulation of the Exit Temperature Pattern of an Aircraft Engine Using a Temperature-Dependent Turbulent Schmidt Number

À propos de cet article

Citez

[1] Barhaghi, D.G., and Hedlund, L., 2018, “Numerical investigation of fluid flow parameters in a combustor simulator,” Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 5C: Heat Transfer. Oslo, Norway. June 11-15, 2018. V05CT17A001. ASME. doi: 10.1115/GT2018-75018.10.1115/GT2018-75018 Search in Google Scholar

[2] Cubeda, S., Mazzei, L., Bacci, T., and Andreini, A. 2018. “Impact of Predicted Combustor Outlet Conditions on the Aerothermal Performance of Film-Cooled HPT Vanes.” Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 5C: Heat Transfer. Oslo, Norway. June 11-15, 2018. V05CT17A005. ASME.10.1115/GT2018-75921 Search in Google Scholar

[3] Smiljanovski, V., and Brehm, N. 1999. “CFD Liquid Spray Combustion Analysis of a Single Annular Gas Turbine Combustor.” Proceedings of the ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations. Indianapolis, Indiana, USA. June 7-10, 1999. V002T02A055. ASME. doi: 10.1115/99-GT-300.10.1115/99-GT-300 Search in Google Scholar

[4] King, P.T., Andrews, G.E., Pourkashanian, M.M., and McIntosh, A.C., 2012, “CFD Predictions of Isothermal Fuel-Air Mixing in a Radial Swirl Low NOx Combustor Using Various RANS Turbulence Models.” Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 2: Combustion, Fuels and Emissions, Parts A and B. Copenhagen, Denmark. June 11-15, 2012. pp. 973-983. ASME. doi: 10.1115/GT2012-69299.10.1115/GT2012-69299 Search in Google Scholar

[5] Launder, B.E. and Spalding, D.B., 1972, Lectures in Mathematical Models of Turbulence, Academic Press, London, England. Search in Google Scholar

[6] Yakhot, V., and Orszag, S.A., 1986, “Renormalization Group Analysis of Turbulence: I. Basic Theory,” Journal of Scientific Computing, 1(1), pp. 1-51.10.1007/BF01061452 Search in Google Scholar

[7] Shih, T.H., Liou, W.W., Shabbir, A., Yang Zh. and Zhu, J., 1995, A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows – Model Development and Validation, Computers & Fluids, 24(3), pp. 227-238.10.1016/0045-7930(94)00032-T Search in Google Scholar

[8] Konle, M., de Guillebon, L., and Beebe, C., 2018, “Multi-Physics Simulations With OpenFOAM in the Re-Design of a Commercial Combustor.” Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 5C: Heat Transfer. Oslo, Norway. June 11-15, 2018. V05CT17A007. ASME. doi: 10.1115/GT2018.10.1115/GT2018-76578 Search in Google Scholar

[9] King, P.T., Andrews, G.E., Pourkashanian, M.M., and McIntosh, A.C., 2012, “Nitric Oxide Predictions for Low NOx Radial Swirlers With Central Fuel Injection Using CFD.” Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 2: Combustion, Fuels and Emissions, Parts A and B. Copenhagen, Denmark. June 11-15, 2012. pp. 985-993. ASME.10.1115/GT2012-69301 Search in Google Scholar

[10] Tong, A.Y., and Sirignano, W.A., 1986, “Multicomponent Droplet Vaporization in a High Temperature Gas,” Combustion & Flame, 66(3), pp. 221-235.10.1016/0010-2180(86)90136-7 Search in Google Scholar

[11] Renksizbulut, M., Bussmann, M., and Li, X., 1992, “A Droplet Vaporization Model for Spray Calculations.” Particle & Particle Systems Characterization, 9, pp. 59-65.10.1002/ppsc.19920090110 Search in Google Scholar

[12] Miller, R. S., Harstad, K., and Bellan, J. 1998, “Evaluation of Equilibrium and Non-Equilibrium Evaporation Models for Many-Drop-let Gas-Liquid Flow Simulations,” International Journal of Multiphase Flow, 24(6), pp. 1025-1055.10.1016/S0301-9322(98)00028-7 Search in Google Scholar

[13] Averin S.I., Minaev A.N., Shvydkii V.S., and Yaroshenko Yu.G., 1987, Fluid and Gas Mechanics. Moscow, Metallurgy Publ. Search in Google Scholar

[14] Launder, B.E., and Spalding, D.B., 1974, “The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, 3, pp. 269-289.10.1016/0045-7825(74)90029-2 Search in Google Scholar

[15] King, P.T., Andrews, G.E., Pourkashanian, M.M., and McIntosh, A.C., 2012, “CFD Predictions of Isothermal Fuel-Air Mixing in a Radial Swirl Low NOx Combustor Using Various RANS Turbulence Models.” Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 2: Combustion, Fuels and Emissions, Parts A and B. Copenhagen, Denmark. June 11–15, 2012. pp. 973-983. ASME. doi: 10.1115/GT2012-69299.10.1115/GT2012-69299 Search in Google Scholar

[16] Deissler, R.G., 1955, Analysis of turbulent heat transfer, mass transfer and friction in smooth tubes at high Prandtl and Schmidt numbers. Nat’1. Advis. Comm. Aero. Report 1210. Search in Google Scholar

[17] Deissler, R.G., 1954, Analysis of turbulent heat transfer, mass transfer and friction in smooth tubes at high Prandtl and Schmidt numbers. Nat’1. Advis. Comm. Aero. Tech. Note 3145. Search in Google Scholar

[18] ANSYS Fluent User’s Guide, 2019, ANSYS Inc. Search in Google Scholar

eISSN:
2545-2835
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Ingénierie, Présentations et aperçus, autres, Géosciences, Sciences des matériaux, Physique