À propos de cet article

Citez

[1] Abel, F.A., 1869, XIV. Contributions to the history of explosive agents. Philos. Trans. R. Soc. london, 159, pp. 489-516.10.1098/rstl.1869.0017 Search in Google Scholar

[2] Berthelot, M. and Vieille, P., 1883, L’onde explosive, Ann. Chim. Phys. Ser 5, 28, pp. 289-332. Search in Google Scholar

[3] Chapman, D. l., 1899, VI. On the rate of explosion in gases. The London, Edinburgh, and Dublin Philosophical Magazine and journal of Science, 47(284), pp. 90-104.10.1080/14786449908621243 Search in Google Scholar

[4] Jouguet, E., 1913, Sur l’onde explosive. CR Acad. Sci., Paris, 156, pp. 872-875. Search in Google Scholar

[5] Zeldovich, Y. B., 1940, Zh. Exp. Teor. Fiz. 10(5), pp. 542-568. English translation, NACA TN No. 1261 (1950). Search in Google Scholar

[6] von Neumann, J., 1942, Theory of detonation waves, OSRD Rep. Search in Google Scholar

[7] Doring, W., 1943, Detonation waves. Ann. Phys. 5e Folge, 43, pp. 421-436.10.1002/andp.19434350605 Search in Google Scholar

[8] Campbell, C. and Woodhead, D.W., 1926, CCCCI.—The ignition of gases by an explosion-wave. Part I. Carbon monoxide and hydrogen mixtures. J. Chem. Soc. (Resumed), 129, pp. 3010-3021. 10.1039/JR9262903010.10.1039/JR9262903010 Search in Google Scholar

[9] Vasil’ev, A.A., 2006, “Cell Size as the Main geometric Parameter of Multifront Detonation Wave,” J. Propul. Power, 22(6), pp.1245-1260.10.2514/1.20348 Search in Google Scholar

[10] Lee, J.H.S. and Radulescu, M.I., 2005, On the hydrodynamic thickness of cell detonations. Combust Explos Shock Waves, 41(6), pp. 745-765. 10.1007/s10573-005-0084-1.10.1007/s10573-005-0084-1 Search in Google Scholar

[11] Vasil’ev, A.A., 1982, Geometric limits of gas detonation propagation, Combust Explos Shock Waves, 18(2), pp. 245-249. 10.1007/BF00789626.10.1007/BF00789626 Search in Google Scholar

[12] Vasil’ev A.A., Mitrofanov, V.V. and Topchiyan, M.E., 1987, Detonation waves in gases. Combust Explos Shock Waves, 23(5), pp. 605-623. 10.1007/BF00756541.10.1007/BF00756541 Search in Google Scholar

[13] Kindracki, j., Kobiera, A., Wolanski, P., Gut, Z., Folusiak, M. and Swiderski, K., 2011, Experimental and numerical study of the rotating detonation engine in hydrogen-air mixtures, EUCASS Proceedings Series, 2, pp. 555-582. 10.1051/eucass/201102555.10.1051/eucass/201102555 Search in Google Scholar

[14] George, A.S., Driscoll, R., Anand, V., et al., 2017, On the existence and multiplicity of rotating detonations. Proc. Combust. Inst, 36(2), pp. 2691-2698. 10.1016/j.proci.2016.06.132.10.1016/j.proci.2016.06.132 Search in Google Scholar

[15] Wen, H., Xie, Q. and Wang, B., 2019, Propagation behaviors of rotating detonation in an obround combustor. Combust. Flame, 210, pp. 389-398. 0.1016/j.combustflame.2019.09.008.10.1016/j.combustflame.2019.09.008 Search in Google Scholar

[16] Lee, B.H.K., Lee, J.H., Knystautas, R., 1966, Transmission of detonation waves through orifices. AIAA j, 4(2), pp. 365-367.10.2514/3.3442 Search in Google Scholar

[17] Ciccarelli, G. and Dorofeev, S., 2008, Flame acceleration and transition to detonation in ducts. Prog. Energy Combust. Sci, 34(4), pp. 499-550. 10.1016/j.pecs.2007.11.002.10.1016/j.pecs.2007.11.002 Search in Google Scholar

[18] Lee, J.H.S., 2008, The detonation phenomenon. Cambridge, from http://mx.itam.nsc.ru/users/libr/elib/4/2008/lee-DetonPhenomenon.pdf.10.1017/CBO9780511754708 Search in Google Scholar

[19] Shchelkin, K.I., 1940, Influence of tube roughness on the formation and detonation propagation in gas. j. Exp. Theor. Phys., 10, pp. 823-827. Search in Google Scholar

[20] Urtiew, P.A. and Oppenheim, A.k., 1966, Experimental observation of the transition to detonation in an explosive gas. Proc. R. Soc. london. Series A. Mathematical and Physical Sciences, 295(1440), pp. 13-28.10.1098/rspa.1966.0223 Search in Google Scholar

[21] Lee, J.H., Knystautas, R. and Yoshikawa, N., 1980, Photochemical initiation of gaseous detonations//gas dynamics of Explosions and Reactive Systems. Pergamon, pp. 971-982.10.1016/B978-0-08-025442-5.50006-8 Search in Google Scholar

[22] Zhang, H., Liu, W. and Liu, S., 2016, Effects of inner cylinder length on H2/air rotating detonation. Int. J. Hydrogen Energy, 41(30), pp. 13281-13293. 10.1016/j.ijhydene.2016.06.083.10.1016/j.ijhydene.2016.06.083 Search in Google Scholar

[23] Fotia, M.L., Hoke, J. and Schauer, F., 2018, Study of the ignition process in a laboratory scale rotating detonation engine. Exp. Therm. Fluid Sci, 94, pp. 345-354. 10.1016/j.expthermflusci.2017.11.002.10.1016/j.expthermflusci.2017.11.002 Search in Google Scholar

[24] Dunlap, R., 1958, A preliminary study of the application of steady-state detonative combustion to a reaction engine. Jof Jet Pro, 28(7), pp. 451-456.10.2514/8.7347 Search in Google Scholar

[25] Gross, R.A., 1963, Oblique detonation waves. AIAA J, 1(5), pp. 1225-1227.10.2514/3.1777 Search in Google Scholar

[26] Ostrander, M., Hyde, J., Young, M., et al.,1987, “Standing oblique detonation wave engine performance.” 23rd Joint Propulsion Conference. 1987-2002. 10.2514/6.1987-2002.10.2514/6.1987-2002 Search in Google Scholar

[27] Ren, Z., Wang, B., Xiang, G., et al., 2018, Effect of the multiphase composition in a premixed fuel-air stream on wedge-induced oblique detonation stabilization. J. Fluid Mech, 846, pp. 411-427. 10.1017/jfm.2018.289.10.1017/jfm.2018.289 Search in Google Scholar

[28] Ren, Z., Wang, B., Xiang, G., et al., 2019, Numerical analysis of wedge-induced oblique detonations in two-phase kerosene-air mixtures. Proc. Combust. Inst, 37(3), pp. 3627-3635. 10.1016/j.proci.2018.08.038.10.1016/j.proci.2018.08.038 Search in Google Scholar

[29] Ashford, S.A. and Emanuel, G., 1996, Oblique detonation wave engine performance prediction. j. Propul. Power, 12(2), pp. 322-327. 10.2514/3.24031.10.2514/3.24031 Search in Google Scholar

[30] Pratt, D.T., Humphrey, J.W. and Glenn, D.E., 1991, Morphology of standing oblique detonation waves. j. Propul. Power, 7(5), pp. 837-845. 10.2514/3.23399.10.2514/3.23399 Search in Google Scholar

[31] Miao, S., Zhou, J., Lin, Z., et al., 2018, Numerical Study on Thermodynamic Efficiency and Stability of Oblique Detonation Waves. AIAA J, 56(8), pp. 3112-3122. 10.2514/1.j05688710.2514/1.J056887 Search in Google Scholar

[32] Valorani, M., Giacinto, M. and Buongiorno, C., 2001, Performance prediction for oblique detonation wave engines (ODWE). Acta Astronaut, 48(4), pp. 211-228. 10.1016/S0094-5765(00)00161-210.1016/S0094-5765(00)00161-2 Search in Google Scholar

[33] Sislian, J.P., Schirmer, H., Dudebout, R., et al., 2001, Propulsive performance of hypersonic oblique detonation wave and shock-induced combustion ramjets. j. Propul. Power, 17(3), pp. 599-604. 10.2514/2.5783.10.2514/2.5783 Search in Google Scholar

[34] Hoffmann, N., 1940, Reaction Propulsion by Intermittent Detonative Combustion. Ministry of Supply, Volkenrode Ranslation. Search in Google Scholar

[35] Kailasanath, K., 2000, Review of propulsion application of detonation waves, AIAA J., 38(9), pp. 1698-1708. 10.2514/2.1156.10.2514/2.1156 Search in Google Scholar

[36] Kailasanath, K., 2003, Recent developments in the research on pulse detonation engines, AIAA J., 41(2), pp. 145-159. 10.2514/6.2002-470.10.2514/2.1933 Search in Google Scholar

[37] Kindracki, J. Experimental research and numerical calculation of the rotating detonation, Ph. D. thesis (in Polish). Search in Google Scholar

[38] Shunsuke, T., Morozumi, T., Matsuoka, K., Kasahara, J., et. al., 2014, Study on pulse detonation rocket engine using flight test demonstrator “Todoroki II”, AIAA 2014-4033. 10.2514/6.2014-4033. Search in Google Scholar

[39] Kailasanath, K., 2009, Research on pulse detonation combustion system-a status report, AIAA 2009-631. 10.2514/6.2009-631.10.2514/6.2009-631 Search in Google Scholar

[40] Bussing, T. and Pappas, G., 1994, Introduction to pulse detonation engines, AIAA Paper 94-0263.10.2514/6.1994-263 Search in Google Scholar

[41] Wintenberger, E. and Shepherd, J. E., 2006, Thermodynamic cycle analysis for propagating detonations, J. Propul. Power, 22(3), pp. 694-698. 10.2514/1.12775.10.2514/1.12775 Search in Google Scholar

[42] Anderson, S.D., Tonouchi, J.H., Lidstone, G.L., et al., 2004, Performance trends for a product scale pulse detonation engine, AIAA 2004-3402. 10.2514/6.2004-3402.10.2514/6.2004-3402 Search in Google Scholar

[43] Lu, J., Zheng, L., Qiu, H., et al., 2016, Performance investigation of a pulse detonation turbine engine, Proc. IME G J. Aero. Eng., 230(2), pp. 350-359. 10.1177/0954410015591834. Search in Google Scholar

[44] Yan, C. and Fan, W., 2005, “Theory and key technology of pulse detonation engine.” Northwestern Polytechnical University Press. Xi`an, China. Search in Google Scholar

[45] Hinkey, J.B., Williams, J.T., Henderson, S.E., et al., 1997, Rotary-valved, multiple-cycle, pulse detonation engine experimental demonstration, AIAA 1997-2746. 10.2514/6.1997-2746.10.2514/6.1997-2746 Search in Google Scholar

[46] Gustavsson, J., Nori, V. and Segal, C., 2003, Inlet/engine interactions in an axisymmetric pulse detonation engine system, j. Propul. Power, 19(2), pp. 282-286. 10.2514/2.6109.10.2514/2.6109 Search in Google Scholar

[47] Rasheed, A., Glaser, A., Dunton, R.A., et al., 2008, Experimental and numerical investigation of a valved multi-tube PDE, AIAA 2008-110. 10.2514/6.2008-110.10.2514/6.2008-110 Search in Google Scholar

[48] Matsuoka, K, Esumi, M., Kasahara, J., et al., 2010, Study on valve systems for pulse detonation engines, AIAA 2010-6672. 10.2514/6.2010-6672.10.2514/6.2010-6672 Search in Google Scholar

[49] Shimo, M. and Heister, S.D., 2008, Multicyclic-detonation-initiation studies in valveless pulsed detonation combustors, J. Propul. Power, 24(2), pp. 336-344. 10.2514/1.29546.10.2514/1.29546 Search in Google Scholar

[50] Peng, C., Fan, W., Zheng, L., et al., 2012, Experimental investigation on valves air-breathing dual-tube pulse detonation engines, Appl. Therm. Eng., 51(1-2), pp. 1116-1123. 10.1016/j.applthermaleng.2012.10.026.10.1016/j.applthermaleng.2012.10.026 Search in Google Scholar

[51] Lu, J., Zheng, L., Wang, Z., et al., 2015, Operating characteristics and propagation of back-pressure waves in a multi-tube two-phase valveless air-breathing pulse detonation combustor, Exp. Therm. Fluid Sci., 61, pp. 12-23. 10.1016/j.expthermflusci.2014.10.010.10.1016/j.expthermflusci.2014.10.010 Search in Google Scholar

[52] Lu, J., “Investigations on key technologies of the pulse detonation turbine engine.” Northwestern Polytechnical University. Search in Google Scholar

[53] Rasheed, A., Tangirala, V.E., Vandervort, C.L., et al., 2004, Interactions of a pulsed detonation engine with a 2D blade cascade, AIAA 2004-1207. 10.2514/6.2004-1207.10.2514/6.2004-1207 Search in Google Scholar

[54] Carlos, X., Olivier, P., Tomas, G., et al., 2018, The efficiency of a pulsed detonation combustor-axial turbine integration, Aero. Sci. Technol., 82-83, pp. 80-91. 10.1016/j.ast.2018.08.038.10.1016/j.ast.2018.08.038 Search in Google Scholar

[55] Glaser, A., Caldwell, N. and Gutmark, E., 2007, Performance of an axial flow turbine driven by multiple pulse detonation combustors, AIAA Paper 2007-1244. 10.2514/6.2007-1244.10.2514/6.2007-1244 Search in Google Scholar

[56] Fernelius, M., Gorrell, S., Hoke, J., et al., 2013, Effect of periodic pressure pulses on axial turbine performance, AIAA Paper 2013-3687. 10.2514/6.2013-3687.10.2514/6.2013-3687 Search in Google Scholar

[57] George, St A., Driscoll, R., Gutmark, E., et al., 2014, Experimental comparison of axial turbine performance under steady and pulsating flows, ASME j. Turbomach., 136(11), pp. 111005.10.1115/1.4028115.10.1115/1.4028115 Search in Google Scholar

[58] Roux, J.A., 2015, Parametric cycle analysis of an ideal pulse detonation engine, J. Thermophys. Heat Transf., 29(4), pp. 671-677. 10.2514/1.T4515.10.2514/1.T4515 Search in Google Scholar

[59] Hutchins, T.E. and Metghalchi, M., 2003, Energy and exergy analysis of the pulse detonation engine, ASME J. Eng. Gas Turbines Power, 125(4), pp. 1075-1080. 10.1115/1.1610015.10.1115/1.1610015 Search in Google Scholar

[60] Endo, T., Kasahara, J., Matsuo, A., et al., 2004, Pressure history at the thrust wall of a simplified pulse detonation engine, AIAA J., 42(9), pp. 1921-1930. 10.2514/1.976.10.2514/1.976 Search in Google Scholar

[61] Chen, W., Fan, W., Qiu, H., et al., 2012, Thermodynamic performance analysis of turbofan engine with a pulse detonation duct heater, Aero. Sci. Technol., 23(1), pp. 206-212. 10.1016/j.ast.2011.07.002.10.1016/j.ast.2011.07.002 Search in Google Scholar

[62] Li, J., Fan, W., Wang, Y., et al., 2010, Performance analysis of the pulse detonation rocket engine based on constant volume cycle model, Appl. Therm. Eng., 30(11-12), pp. 1496-1504. 10.1016/j.applthermaleng.2010.03.017.10.1016/j.applthermaleng.2010.03.017 Search in Google Scholar

[63] Ma, F., Choi, J.Y. and Yang, V., 2006, Propulsive performance of airbreathing pulse detonation engines, j. Propul. Power, 22(6), pp. 1188-1203. 10.2514/1.21755.10.2514/1.21755 Search in Google Scholar

[64] Schwer, D.A. and Kailasanath, K., 2011, Numerical study of the effects of engine size on rotating detonation engines, AIAA 2011-581. 10.2514/6.2011-581.10.2514/6.2011-581 Search in Google Scholar

[65] Kaemming, T.A., Fotia, M.L., Hoke, J., et al., 2017, Thermodynamic modeling of a rotating detonation engine through a reduced-order approach, J. Propul. Power, 33(5), pp. 1170-1178. 10.2514/1.B36237.10.2514/1.B36237 Search in Google Scholar

[66] Bykovskii, F.A., Zhdan, S.A. and Vedernikov, E.F., 2006, Continuous spin detonations, J. Propul. Power, 22(6), pp. 1204-1216. 10.2514/1.17656.10.2514/1.17656 Search in Google Scholar

[67] Suchocki, J., Yu, S., Hoke, J., et al., 2012, Rotating detonation engine operation, AIAA Paper 2012-0119. 10.2514/6.2012-119.10.2514/6.2012-119 Search in Google Scholar

[68] Liu, S., Liu, W., Lin, Z., et al., 2015, Experimental research on the propagation characteristics of continuous rotating detonation wave near the operating boundary, Combust. Sci. Technol., 187, pp. 1790-1804. 10.1080/00102202.2015.1019620.10.1080/00102202.2015.1019620 Search in Google Scholar

[69] Xie, Q., Wen, H., Li, W., et al., 2018, Analysis of operating diagram for H2/air rotating detonation combustors under lean fuel condition, Energy, 151, pp. 408-419. 10.1016/j.energy.2018.03.062.10.1016/j.energy.2018.03.062 Search in Google Scholar

[70] Saracoglu, B.H. and Ozden, A., 2018, The effects of multiple detonation waves in the RDE flow field, Transp. Res. Proc., 29, pp. 390-400. 10.1016/j.trpro.2018.02.035.10.1016/j.trpro.2018.02.035 Search in Google Scholar

[71] Tsuboi, N., Eto, S., Hayashi, A.K., et al., 2017, Front cellular structure and thrust performance on hydrogen-oxygen rotating detonation engine, J. Propul. Power, 33(1) pp. 100-111. 10.2514/1.B36095.10.2514/1.B36095 Search in Google Scholar

[72] Katta, V.R., Cho, K.Y., Hoke, J.L., et al., 2019, Effect of increasing channel width on the structure of rotating detonation wave, Proc. Combust. Inst., 37(3), pp. 3575-3583. 10.1016/j.proci.2018.05.072.10.1016/j.proci.2018.05.072 Search in Google Scholar

[73] Ji, Z., Zhang, H. and Wang, B., 2019, Performance analysis of dual-duct rotating detonation aero-turbine engine, Aerosp. Sci. Technol., 92, pp. 806-819. 10.1016/j.ast.2019.07.011.10.1016/j.ast.2019.07.011 Search in Google Scholar

[74] Ji, Z., 2019, Comprehensive performance analysis of the continuous rotating detonation based airbreathing propulsion systems, PhD Dissertation, Tsinghua University. Search in Google Scholar

[75] Ji, Z., Zhang, H., Wang, B., and He, W. (January 10, 2020). Comprehensive Performance Analysis of the Turbofan With a Multi-Annular Rotating Detonation Duct Burner. ASME. J. Eng. Gas Turbines Power, 142(2), p. 021007. 10.1115/1.4045518.10.1115/1.4045518 Search in Google Scholar

[76] Schwer, D.A. and Kailasanath, K., 2012, Feedback into mixture plenums in rotating detonation engines, AIAA Paper, 2012-0617. 10.2514/6.2012-617.10.2514/6.2012-617 Search in Google Scholar

[77] Schwer, D.A. and Kailasanath, K., 2013, On reducing feedback pressure in rotating detonation engines, AIAA Paper, 2013-1178. 10.2514/6.2013-1178.10.2514/6.2013-1178 Search in Google Scholar

[78] Anand, V., George, St A., Driscoll, R., et al., 2016, Analysis of air inlet and fuel plenum behavior in a rotating detonation combustor, Exp. Therm. Fluid Sci., 70, pp. 408-416. 10.1016/j.expthermflusci.2015.10.007.10.1016/j.expthermflusci.2015.10.007 Search in Google Scholar

[79] Zhou, S., Ma, H., Li, S., et al., 2017, Effects of a turbine guide vane on hydrogen-air rotating detonation wave propagation characteristics, Int. j. Hydrog. Energy, 42, pp. 20297-20305. 10.1016/j.ijhydene.2017.06.115.10.1016/j.ijhydene.2017.06.115 Search in Google Scholar

[80] Zhou, S., Ma, H., Liu, D., et al., 2017, Experimental study of a hydrogen-air rotating detonation combustor, Int. J. Hydrog. Energy, 42, pp. 14741-14749. 10.1016/j.ijhydene.2017.04.214.10.1016/j.ijhydene.2017.04.214 Search in Google Scholar

[81] Liu, Z., Braun, J., and Paniagua, G., 2018, Three dimensional optimization for subsonic axial turbines operating at high unsteady inlet Mach number, AIAA Paper 2018-4480. 10.2514/6.2018-4480.10.2514/6.2018-4480 Search in Google Scholar

[82] Liu, Z., Braun, J., and Paniagua, G., 2019, Characterization of a supersonic turbine downstream of a rotating detonation combustor, ASME J. Eng. gas Turbines Power, 141(3), pp. 031501. 10.1115/1.4040815.10.1115/1.4040815 Search in Google Scholar

[83] Wolański, P., 2015, Application of the continuous rotating detonation to gas turbine, Appl. Mech. Mater. 782, pp. 3-12. 10.4028/www.scientific.net/AMM.782.3.10.4028/www.scientific.net/AMM.782.3 Search in Google Scholar

[84] Naples, A., Hoke, J., Battelle, R., Wagner, M. and Schauer, F., 2017, Rotating detonation engine implementation into an open-loop T63 gas turbine engine, AIAA Paper 2017-1747. 10.2514/6.2017-1747.10.2514/6.2017-1747 Search in Google Scholar

[85] Sousa, J., Paniagua, G. and Morata, E.C., 2017, Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor, Appl. Energy, 195, pp. 247-256. 10.1016/j.apenergy.2017.03.045.10.1016/j.apenergy.2017.03.045 Search in Google Scholar

[86] Ji, Z., zhang, H. and Wang, B., 2019, Thrust control strategy based on the minimum combustor inlet Mach number to enhance the overall performance of a scramjet engine, Proc. IME G J. Aero. Eng., 233(13), pp. 4810-4824. 10.1177/0954410019830816.10.1177/0954410019830816 Search in Google Scholar

[87] Segal, C., 2009, The scramjet engine: processes and characteristics. 1st ed. New York: Cambridge University Press.10.1017/CBO9780511627019 Search in Google Scholar

[88] Ji, Z., Zhang, H., Xie, Q., et al., 2018, Thermodynamic process and performance analysis of the continuous rotating detonation turbine engine, J. Tsinghua Univ. (Sci. Technol.), 58(10), pp. 899-905. 10.16511/j.cnki.qhdxxb.2018.26.040. Search in Google Scholar

[89] Braun, E.M., Lu, F.K., Wilson, D.R., et al., 2013, Airbreathing rotating detonation wave engine cycle analysis, Aerosp. Sci. Technol., 27(1), pp. 201-208. 10.1016/j.ast.2012.08.010.10.1016/j.ast.2012.08.010 Search in Google Scholar

[90] Mizener, A.R. and Lu, F.K., 2017, Low-order parametric analysis of a rotating detonation engine in rocket mode, J. Propul. Power, 33, pp. 1543-1554. 10.2514/1.B3643210.2514/1.B36432 Search in Google Scholar

[91] Fievisohn, R.T. and Yu, K.H., 2017, Steady-state analysis of rotating detonation engine flowfields with the method of characteristics, J. Propul. Power, 33(1), pp. 89-99. 10.2514/1.B3610310.2514/1.B36103 Search in Google Scholar

[92] Sousa, J., Braun, J. and Paniagua, G., 2017, Development of a fast evaluation tool for rotating detonation combustors, Appl. Math. Model, 52, pp. 42-52. 10.1016/j.apm.2017.07.01910.1016/j.apm.2017.07.019 Search in Google Scholar

[93] Voitsekhovskii, B.V., 1959, Statsionarnaya dyetonatsiya. Doklady Akademii Nauk SSSR, 129(6), pp. 1254-1256. Search in Google Scholar

[94] Bykovskii, F.A. Zhdan, S.A., 2013, Continuously detonation engine. Doklady Akademii Nauk. Search in Google Scholar

[95] Bykovskii, F.A. Mitrofanov, V.V. Vedernikov, E.F., 1997, Continuous detonation combustion of fuel-air mixtures. Combust. Explos. Shock Waves, 33(3), pp. 344-353. 10.1007/BF02671875.10.1007/BF02671875 Search in Google Scholar

[96] Bykovskii, F.A. and Mitrofanov, V.V., 2000, “A continuous spin detonation in liquid fuel sprays.” Control of Detonation Processes, edited by G.D. Roy, S.M. Frolov, D.W. Netzer, and A.A. Borisov, Elex-kM Publishers, Moscow, pp. 209-211. Search in Google Scholar

[97] Bykovskii, F.A. and Vedernikov, E.F., 2003, Continuous detonation of a subsonic flow of a propellant. Combust. Explos. Shock Waves, 39(3), pp. 323-334. 10.1023/A:1023800521344. Search in Google Scholar

[98] Bykovskii, F.A. Zhdan, S.A., Vedernikov, E.F., 2005, Continuous spin detonation in annular combustors. Combust., Explos. Shock Waves, 41(4), pp. 449-459. 10.1007/s10573-005-0055-6.10.1007/s10573-005-0055-6 Search in Google Scholar

[99] Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F., 2006, Continuous spin detonation of fuel-air mixtures.Combust., Explos. Shock Waves, 2006, 42(4), pp. 463-471. 10.1007/s10573-006-0076-9.10.1007/s10573-006-0076-9 Search in Google Scholar

[100] Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F., 2006, Continuous spin detonations. j. Propul. Power, 22(6), pp. 1204-1216. 10.2514/1.17656.10.2514/1.17656 Search in Google Scholar

[101] Frolov, S.M., Aksenov, V.S., Ivanov, V.S., 2015, Experimental proof of zel’dovich cycle efficiency gain over cycle with constant pressure combustion for hydrogen-oxygen fuel mixture. Int. J. Hydrogen Energy, 40(21), pp. 6970-6975. 10.1016/j.ijhydene.2015.03.128.10.1016/j.ijhydene.2015.03.128 Search in Google Scholar

[102] Frolov, S.M., Aksenov, V.S., Gusev, P.A., Ivanov, V.S., Medvedev, S.N., et al., 2015, Experimental studies of small samples bench engine with a continuously-detonation combustors. gorenie Vzryv, 8(1), pp. 151-163. Search in Google Scholar

[103] Frolov, S.M., Aksenov, V.S., Ivanov, V.S., et al., 2015, large-scale hydrogen-air continuous detonation combustor. Int. J. Hydrogen Energy, 40(3), pp. 1616-1623. 10.1016/j.ijhydene.2014.11.112.10.1016/j.ijhydene.2014.11.112 Search in Google Scholar

[104] Frolov, S.M., Aksenov, V.S., Dubrovskii, A.V., et al., 2015, Energy efficiency of a continuous-detonation combustion chamber. Combust. Explos. Shock Waves, 51(2), pp. 232-245. 10.1134/S0010508215020070.10.1134/S0010508215020070 Search in Google Scholar

[105] Frolov, S.M., Zvegintsev, V.I., Ivanov, V.S., et al., 2017, Demonstrator of continuous-detonation air-breathing ramjet: Wind tunnel data. Doklady Physical Chemistry, 474(1), pp. 75-79. 10.1134/S0012501617050013.10.1134/S0012501617050013 Search in Google Scholar

[106] The first successful test launch of a new generation of green propellant liquid fuel rocket engine in Russia, 2016, from http://fpi.gov.ru/press/news/20160826. Search in Google Scholar

[107] Nicholls, J.A., 1962, “The feasibility of a rotating detonation wave rocket motor. Feasibility of A Rotating Detonation Wave Rocket Motor.” The University of Michigan. Search in Google Scholar

[108] Russo, R., King, P., Schauer, F. and Lewis, T., 2013, Characterization of Pressure Rise Across a Continuous Detonation Engine. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 10.2514/6.2011-6046. Search in Google Scholar

[109] Russo, Rachel M., 2011, “Operational Characteristics of a Rotating Detonation Engine Using Hydrogen and Air.” Theses and Dissertations. 1352. Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio. Search in Google Scholar

[110] Shank, J., King, P., Karnesky, J., et al., 2012, “Development and testing of a modular rotating detonation engine.” 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, AIAA 2012-0120. 10.2514/6.2012-120.10.2514/6.2012-120 Search in Google Scholar

[111] Shank, J.C., 2012, “Development and testing of a rotating detonation engine run on hydrogen and air.” Thesis. Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio. Search in Google Scholar

[112] Thomas, L., Schauer, F., Hoke, J., et al., 2011, “Buildup and operation of a rotating detonation engine.” 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2011-602. 10.2514/6.2011-602.10.2514/6.2011-602 Search in Google Scholar

[113] Tellefsen, J., King, P., Schauer, F. and Hoke, J., 2012, “Analysis of an RDE with convergent nozzle in preparation for turbine integration.” 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2012-0773. 10.2514/6.2012-773.10.2514/6.2012-773 Search in Google Scholar

[114] Tellefsen, J., 2012, “Build up and operation of an axial turbine driven by a rotary detonation engine.” Theses and Dissertations, Air Force Inst of Tech Wright-Patterson Afb oh graduate School of Engineering and Management. 1071. https://scholar.afit.edu/etd/1071. Search in Google Scholar

[115] Fotia, M., Kaemming, T.A., Hoke, J., et al., 2015, “Study of the experimental performance of a rotating detonation engine with nozzle exhaust flow.” 53rd AIAA Aerospace Sciences Meeting. AIAA 2015-0631. 10.2514/6.2015-0631.10.2514/6.2015-0631 Search in Google Scholar

[116] Fotia, M., 2015, Update on Air Breathing Detonation Driven Propulsion Research. International Workshop on Detonation for Propulsion. Search in Google Scholar

[117] Fotia, M., Hoke, J., Schauer, F., 2017, Experimental performance scaling of rotating detonation engines operated on gaseous fuels. J. Propul. Power, Vol. 33(5), pp. 1-10. 10.2514/1.B36213.10.2514/1.B36213 Search in Google Scholar

[118] Fotia, M., 2016, Thermodynamics Modelling and the Operation of Rotating Detonation Engines at Elevated Inlet Temperatures. International Workshop on Detonation for Propulsion. Search in Google Scholar

[119] Theuerkauf, S.W., Schauer, F., Anthony, R., et al., 2014, “Average and Instantaneous Heat Release to the Walls of an RDE.” 52nd Aerospace Sciences Meeting. 1503.10.2514/6.2014-1503 Search in Google Scholar

[120] Theuerkauf, S.W., Schauer, F., Anthony, R., et al., 2015, “Experimental characterization of high-frequency heat flux in a rotating detonation engine.” 53rd AIAA Aerospace Sciences Meeting. 1603.10.2514/6.2015-1603 Search in Google Scholar

[121] Theuerkauf, S.W., Schauer, F., Anthony, R., et al., 2016, “Comparison of simulated and measured instantaneous heat flux in a rotating detonation engine.” 54th AIAA Aerospace Sciences Meeting. 1200.10.2514/6.2016-1200 Search in Google Scholar

[122] Braun, J. Sousa, J. Paniagua. G., 2016, “Assessment of the boundary layer within a Rotating Detonation Combustor.” 52nd AIAA/SAE/ASEE Joint Propulsion Conference. 4557.10.2514/6.2016-4557 Search in Google Scholar

[123] Meyer, S.J., Polanka, M.D., Schauer, F., et al., 2017, Experimental Characterization of Heat Transfer Coefficients in a Rotating Detonation Engine.” 55th AIAA Aerospace Sciences Meeting. 1285.10.2514/6.2017-1285 Search in Google Scholar

[124] Rankin, B.A., Richardson, D.R., Caswell, A.W., et al., 2015, Imaging of OH* chemiluminescence in an optically accessible nonpremixed rotating detonation engine.” 53rd AIAA Aerospace Sciences Meeting. 1604.10.2514/6.2015-1604 Search in Google Scholar

[125] Rankin, B.A., Richardson, D.R., Caswell, A.W., et al., 2017, Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine. Combust. Flame, 176(1), pp. 12-22. 10.1016/j.combustflame.2016.09.020.10.1016/j.combustflame.2016.09.020 Search in Google Scholar

[126] Kailasanath, K., 2011, “The Rotating Detonation-Wave Engine Concept: A Brief Status Report.” 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. 580.10.2514/6.2011-580 Search in Google Scholar

[127] Kailasanath, K., 2017, “Recent developments in the research on rotating-detonation-wave engines.” 55th AIAA Aerospace Sciences Meeting. 0784.10.2514/6.2017-0784 Search in Google Scholar

[128] Schwer, D. and Kailasanath, K., 2010, “Numerical investigation of rotating detonation engines.” 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 6880.10.2514/6.2010-6880 Search in Google Scholar

[129] Schwer, D. and Kailasanath, K., 2011, “Effect of inlet on fill region and performance of rotating detonation engines.” 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 6044.10.2514/6.2011-6044 Search in Google Scholar

[130] Schwer, D. and Kailasanath, K., 2011, “Numerical Study of the Effects of Engine Size n Rotating Detonation Engines.” 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. 581.10.2514/6.2011-581 Search in Google Scholar

[131] Schwer, D. and Kailasanath, K., 2012, “Feedback into mixture plenums in rotating detonation engines.” 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 617.10.2514/6.2012-617 Search in Google Scholar

[132] Schwer, D. and Kailasanath, K., 2016, Characterizing NOx Emissions for Air-Breathing Rotating Detonation Engines.” 52nd AIAA/SAE/ASEE Joint Propulsion Conference. 4779.10.2514/6.2016-4779 Search in Google Scholar

[133] Edward, D.L., Jeffrey, S., et al., 2015, “Rotating Detonation Combustion for gas Turbines – Modeling and System Synthesis to Exceed 65% Efficiency goal.” University Turbine Systems Research Workshop. 23983. Search in Google Scholar

[134] Ferguson, D., 2016, “Overview of Pressure gain Combustion Studies at NETl.” University Turbine Systems Research Workshop. 2301. Search in Google Scholar

[135] Anand, V., George, A.S., Driscoll, R., et al., 2015, Characterization of instabilities in a rotating detonation combustor. Int. J. Hydrogen Energy, 40(46), pp. 16649-16659. 10.1016/j.ijhydene.2015.09.046.10.1016/j.ijhydene.2015.09.046 Search in Google Scholar

[136] Anand, V., George, A.S., Driscoll, R., et al., 2016, Investigation of rotating detonation combustor operation with H2-air mixtures. Int. J. Hydrogen Energy, 41(2), pp. 1281-1292. 10.1016/j.ijhydene.2015.11.041.10.1016/j.ijhydene.2015.11.041 Search in Google Scholar

[137] Anand, V., George, A.S., Driscoll, R., et al., 2016, Analysis of air inlet and fuel plenum behavior in a rotating detonation combustor. Exp. Therm. Fluid Sci, 70, pp. 408-416. 10.1016/j.expthermflusci.2015.10.007.10.1016/j.expthermflusci.2015.10.007 Search in Google Scholar

[138] Driscoll, R., Aghasi, P., George, S.A., et al., 2016, Three-dimensional, numerical investigation of reactant injection variation in a H2/air rotating detonation engine. Int. j. Hydrogen Energy, 41(9), pp. 5162-5175. 10.1016/j.ijhydene.2016.01.116.10.1016/j.ijhydene.2016.01.116 Search in Google Scholar

[139] Suchocki, J., Yu, S.T., Hoke, J., et al., 2012, “Rotating detonation engine operation.” 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 119.10.2514/6.2012-119 Search in Google Scholar

[140] Braun, E., Dunn, N. and Lu, F., 2010, “Testing of a continuous detonation wave engine with swirled injection.” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 146.10.2514/6.2010-146 Search in Google Scholar

[141] Braun, E., Balcazar, T.S., Wilson, D.R., et al., 2012, Experimental Study of a High-Frequency Fluidic Valve Fuel Injector. j. Propul. Power, 28(5), pp. 1121-1125. 10.2514/1.B3444210.2514/1.B34442 Search in Google Scholar

[142] Heister, S., Slabaugh, C., et al., 2016, “Advancing Pressure gain Combustion in Terrestrial Turbine Systems.” University Turbine Systems Research Workshop. 1004. Search in Google Scholar

[143] Daniau, E., Falempin, F., Getin, N., et al., 2006, Design of a continuous detonation wave engine for space application.” 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 4794.10.2514/6.2006-4794 Search in Google Scholar

[144] Falempin, F., Daniau, E., Getin, N., et al., 2006, “Toward a continuous detonation wave rocket engine.” 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. 7956.10.2514/6.2006-7956 Search in Google Scholar

[145] Falempin, F. and Daniau, E., 2008, “A contribution to the development of actual continuous detonation wave engine.” 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2679.10.2514/6.2008-2679 Search in Google Scholar

[146] Falempin, F. and Naour, B., 2009, “R&T effort on pulsed and continuous detonation wave engines.” 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. 7284.10.2514/6.2009-7284 Search in Google Scholar

[147] Falempin, F., Naour, B. and Miquel, F., 2011, “Recent experimental results obtained on continuous detonation wave engine.” 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2235.10.2514/6.2011-2235 Search in Google Scholar

[148] Eude, Y., Davidenko, D., Falempin, F., et al., 2011, “Use of the adaptive mesh refinement for 3D simulations of a CDWRE (continuous detonation wave rocket engine).” 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2236.10.2514/6.2011-2236 Search in Google Scholar

[149] Davidenko, D., Eude, Y., Falempin, F., 2009, “Numerical study on the annular nozzle optimization for rocket application.” 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. 7390.10.2514/6.2009-7390 Search in Google Scholar

[150] Wolanski, P. and Kindracki, J., 2009, Research on continuous rotating detonation and its applications to jet propulsion. ISABE, 2009-1313. Search in Google Scholar

[151] Kindracki J., Wolański, P., Gut, Z., 2011, Experimental research on the rotating detonation in gaseous fuels-oxygen mixture. Shock Waves, 21(2), pp. 75-84. 10.1007/s00193-011-0298-y.10.1007/s00193-011-0298-y Search in Google Scholar

[152] Kindracki, J., 2012, Experimental studies of kerosene injection into a model of a detonation chamber. J. Power Technol., 92(2), p. 80. Search in Google Scholar

[153] Kindracki, J., 2015, Experimental research on rotating detonation in liquid fuel-gaseous air mixtures. Aerosp. Sci. Technol., 43, pp. 445-453. 10.1016/j.ast.2015.04.006.10.1016/j.ast.2015.04.006 Search in Google Scholar

[154] Tobita, A., Fujiwara, T., Wolanski, P., 2010, “Detonation engine and flying object provided therewith.” U.S. Patent, 7,784,267. Search in Google Scholar

[155] Wolański, P., 2015, Application of the continuous rotating detonation to gas turbine.” Applied Mechanics and Materials, 782, pp. 3-12. 10.4028/www.scientific.net/amm.782.3.10.4028/www.scientific.net/AMM.782.3 Search in Google Scholar

[156] Kindracki, J., 2016, Recent research on the rotating detonation at Warsaw University of Technology. Transactions of the Institute of Aviation, 245, pp. 37-45.10.5604/05096669.1226351 Search in Google Scholar

[157] Kawalec, M., Wolański, P., et al., 2016, “Influence of mixture on performance of rotating detonation rocket engine.” International Constant-Volume and Detonation Combustion Workshop. Search in Google Scholar

[158] Wolański, P., 2018, “Research Progress in Poland.” International Workshop on Detonation for Propulsion. Search in Google Scholar

[159] Folusiak, M., Kobiera, A. and Wolański, P., 2010, Rotating detonation engine simulations in-house code-REFloPS. Transactions of the Institute of Aviation, 207, pp. 3-12. Search in Google Scholar

[160] Folusiak, M., Swiderski, K., Kobiera, A., et al., 2011, “graphics Processors as a tool for rotating detonation simulations.” 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems, University of California, Irvine. Search in Google Scholar

[161] Folusiak, M., Swiderski, K., Kindracki, J., et al., 2013, “Assessment of numerical simulations of RDE combustion chamber”. 24th ICDERS, Taipei, Taiwan. Search in Google Scholar

[162] Folusiak, M., Swiderski, K., Kindracki, J., et al., 2013, “Improving accuracy and performance of Rotating Detonation Engine simulations.” European Conference for AeroSpace Sciences. Search in Google Scholar

[163] Folusiak, M., Swiderski, K., Kobiera, A., et al., 2013, Three-dimensional numerical simulations of the combustion chamber of the rotating detonation engine. journal of kONES, 20(1), pp. 83-88.10.5604/12314005.1135319 Search in Google Scholar

[164] Folusiak, M., Swiderski, K., Kobiera, A., et al., 2013, Numerical tools for three dimensional simulations of the rotating detonation engine in complex geometries. journal of kONES, 20(1), pp. 329-336.10.5604/12314005.1136193 Search in Google Scholar

[165] Swiderski, K., Folusiak, M., Lukasik, B., et al., 2013, Three-dimensional numerical study of the propulsion system based on rotating detonation using Adaptive Mesh Refinement. ICDERS, Taipei, Taiwan.10.5604/12314005.1135319 Search in Google Scholar

[166] Hishida, M., Fujiwara, T., Wolański, P., 2009, Fundamentals of rotating detonations. Shock waves, 19(1), pp. 1-10. 10.1007/s00193-008-0178-2.10.1007/s00193-008-0178-2 Search in Google Scholar

[167] Hayashi, A.K., Kimura, Y., Yamada, T., et al., 2009, “Sensitivity analysis of rotating detonation engine with a detailed reaction model.” 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 633.10.2514/6.2009-633 Search in Google Scholar

[168] Tsuboi, N., Watanabe, Y., Kojima, T., et al., 2015, Numerical estimation of the thrust performance on a rotating detonation engine for a hydrogen-oxygen mixture. Proc. Combust. Inst., 35(2), pp. 2005-2013.10.1016/j.proci.2014.09.010 Search in Google Scholar

[169] Yamada, T., Hayashi, A.K., Tsuboi, N., et al., 2010, “Numerical analysis of threshold of limit detonation in rotating detonation engine.” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 153.10.2514/6.2010-153 Search in Google Scholar

[170] Tsuboi, N., Hayashi, A.K., et al., 2016, “Simulation on rotating detonation engine: effects of converging-diverging nozzle, non-uniform injection, and hydrocarbon-fueled detonation.” International Workshop on Detonation for Propulsion. Search in Google Scholar

[171] Kasahara, J., Kato, Y., Ishihara, K., et al., 2016, “Research and development of rotating detonation engine for upper-stage kick motor system.” International Workshop on Detonation for Propulsion. Search in Google Scholar

[172] Yi, T.H., Turangan, C., Lou, J., et al., 2009, “A three-dimensional numerical study of rotational detonation in an annular chamber.” 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 634.10.2514/6.2009-634 Search in Google Scholar

[173] Yi, T.H., Lou, J., Turangan, C., et al., 2010, “Effect of Nozzle Shapes on the Performance of Continuously-Rotating Detonation Engine.” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 152.10.2514/6.2010-152 Search in Google Scholar

[174] Yi, T.H., Lou, J., Turangan, C., et al., 2011, Propulsive performance of a continuously rotating detonation engine. j. Propul. Power, 27(1), pp. 171-181. 10.2514/1.46686.10.2514/1.46686 Search in Google Scholar

[175] Choi, J.Y., 2016, “Research progress of detonation studies for propulsion in PNU.” International Workshop on Detonation for Propulsion. Search in Google Scholar

[176] Liu, S.j., Lin, Z.Y., Sun, M.B., et al., 2010, Two-dimensional numerical simulation of rotating detonation wave engine. J. Propul. Technol, 31(5), pp. 634-640 (in Chinese). Search in Google Scholar

[177] Liu, S.j., Qin, H., Lin, Z.Y., et al., 2011, Detailed structure and propagating mechanism research on continuous rotating detonation wave. J. Propul. Technol, 32(3), pp. 431-436 (in Chinese). Search in Google Scholar

[178] Liu, S.j. Lin, Z.Y., Sun, M.B., et al., 2010, Numerical Simulation of Cell Detonation Using Different Chemical Reacting Source Term Methods. J. Natl. Univ. Def. Technol., 5, pp. 01-06 (in Chinese). Search in Google Scholar

[179] Liu, S.j. Lin, Z.Y., Sun, M.B., et al., 2011, Thrust vectoring of a continuous rotating detonation engine by changing the local injection pressure. Chin. Phys. Lett., 28(9), pp. 094704.10.1088/0256-307X/28/9/094704 Search in Google Scholar

[180] Liu, S.j., Lin, Z.Y., Liu, W.D., et al., 2012, Experimental realization of H2/air continuous rotating detonation in a cylindrical combustor. Combust. Sci. Technol., 184(9), pp. 1302-1317. 10.1080/00102202.2012.682669.10.1080/00102202.2012.682669 Search in Google Scholar

[181] Liu, S.j., Lin, Z.Y., Liu, W.D., et al., 2013, Experimental and three-dimensional numerical investigations on H2/air continuous rotating detonation wave. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 227(2), pp. 326-341. 10.1177/0954410011433542.10.1177/0954410011433542 Search in Google Scholar

[182] Lin, W., Zhou, J., Lin, Z.Y., et al., 2015, Numerical simulation of detonation onset by hot jets. J. Natl. Univ. Def. Technol., 37(1), pp. 70-77 (in Chinese). Search in Google Scholar

[183] Zhou, Z.L., Liu, W.D., Liu, S.j., et al., 2013, Investigation on Propagation Process of Detonation Wave Influenced by lateral Expansion. J. Propul. Technol, 34(5), pp. 713-720 (in Chinese). Search in Google Scholar

[184] Wang, D., Zhou, J. and Zhou, Z.L., 2015, Numerical Simulation on the Working Process of the Hydrogen-Oxygen Continuous Rotating Engine with an Expansive Nozzle. Tactical Missile Technology, 2015(6), pp. 57-65 (in Chinese). Search in Google Scholar

[185] Liu, S.j., Liu, W.D., Lin, Z.Y., et al., 2017, “Experimental Research on the Continuous Rotating Detonation Ramjet Engine.” The 9th National Hypersonic Technology Conference.10.2514/6.2017-2282 Search in Google Scholar

[186] Ma, H., Feng, F., Wu, X.S., et al., 2012, Effect of Pressure Condition on Rotating Detonation Engine. J. Ballist., 24(4), pp. 94-98. Search in Google Scholar

[187] Chen, J., Wang, D., Ma, H., et al., 2013, Influence of Axial length on Rotating Detonation Engine. J. Aerosp. Power, 28(4), pp. 844-849 (in Chinese). Search in Google Scholar

[188] Gao, J., Wu, X.S., Ma, H., et al., 2016, Experiment of Effect of Nozzle Shapes on the Performance of Rotating Detonation Engine. J. Aerosp. Power, 31(10), pp. 2443-2453 (in Chinese). Search in Google Scholar

[189] Gao, J., Wu, X.S., Ma, H., et al., 2016, Experimental Research on Rotating Detonation Engines with Different Combustion Chamber Length. J. Propul. Technol, 37(10), pp. 1991-2000 (in Chinese). Search in Google Scholar

[190] Zhou, S.B., Wang, D., Ma, H., et al., 2016, “Experimental Study on Rotating Detonation with Small Oxidizer Injection Area.” The first joint conference on Aerospace Power (in Chinese). Search in Google Scholar

[191] Xu, C., Ma, H., Yan, Y., et al., 2017, Experimental Study on Operating Characteristics of Rotating Detonation Engine. j. Ballist., 29(3), pp. 74-81 (in Chinese). Search in Google Scholar

[192] Ma, H., Feng, F., Wu, X.S., et al., 2012, Effect of pressure condition on rotating detonation engine. J. Ballist., 24(4), pp. 94-98. Search in Google Scholar

[193] Zhou, S., Ma, H., Liu, D., et al., 2017, Experimental study of a hydrogen-air rotating detonation combustor. Int. J. Hydrogen Energy, 42(21), pp. 14741-14749. 10.1016/j.ijhydene.2017.04.214.10.1016/j.ijhydene.2017.04.214 Search in Google Scholar

[194] Peng, L., Wang, D., Wu, X., et al., 2015, Ignition experiment with automotive spark on rotating detonation engine. Int. j. Hydrogen Energy, 40(26), pp. 8465-8474. 10.1016/j.ijhydene.2015.04.126.10.1016/j.ijhydene.2015.04.126 Search in Google Scholar

[195] Zheng, Q., Weng, C.S. and Bai, Q.D., 2014, Experiment on Continuous Rotating Detonation Engine with Tilt Slot Injector. j. Propul. Technol., 35(4), pp. 570-576 (in Chinese). Search in Google Scholar

[196] Zheng, Q., Weng, C.S. and Bai, Q.D., 2015, Experimental Study on Effects of Equivalence Ratio on Detonation Characteristics of liquid-Fueled Rotating Detonation Engine. J. Propul. Technol, 36(6), pp. 947-952 (in Chinese). Search in Google Scholar

[197] Li, B.X. and Weng, C.S., 2018, Influence of liquid Fuel on the Detonation Characteristics of Continuous Rotating Detonation Engine. Explosion and Shock Waves, 38(2), pp. 331-338 (in Chinese). Search in Google Scholar

[198] Wang, Y.Y. and Weng, C.S., 2013, Effects of Nozzle on Flow Field and Performance of Multi-Cycle Two-Phase Pulse Detonation Engines. J. Aerosp. Power, 28(10), pp. 2256-2266 (in Chinese). Search in Google Scholar

[199] Shao, Y.T., Liu, M., Wang, J.P., 2009, Numerical Simulation of Continuous Rotating Detonation Engine in Column Coordinate. J. Propul. Technol, 30(6), pp. 717-721 (in Chinese). Search in Google Scholar

[200] Tang, X.M., Wang, J.P. and Shao, Y.T., 2013, 3-D Simulation of Rotating Detonation Wave in Combustion Chambers Without Inner Wall. J. Aerosp. Power, 28(4), pp. 792-799 (in Chinese). Search in Google Scholar

[201] Wu, D., Liu, Y., Wang, J.P., 2015, Three-Dimensional Numerical Simulation of the Parametric Properties of Continuously Rotating Detonation Engine. J. Aerosp. Power, 30(7), pp. 1576-1582 (in Chinese). Search in Google Scholar

[202] Shao, Y.T. and Wang, J.P., 2009, Two-Dimensional Simulation of Continuous Detonation Engine. J. Aerosp. Power, 24(5), pp. 980-987 (in Chinese). Search in Google Scholar

[203] Wu, D. and Wang, J.P., 2012, Influences of Viscosity and Thermal Conductivity on Detonation Waves. Chin. J. Appl. Mech, 29(6), pp. 630-635 (in Chinese). Search in Google Scholar

[204] Wang, Y., Wang, J.P., Li, Y., et al., 2014, Induction for multiple rotating detonation waves in the hydrogen-oxygen mixture with tangential flow. Int. J. Hydrogen Energy, 39(22), pp. 11792-11797. 10.1016/j.ijhydene.2014.05.162.10.1016/j.ijhydene.2014.05.162 Search in Google Scholar

[205] Wu, D., Liu, Y., Liu, Y., et al., 2014, Numerical investigations of the restabilization of hydrogen-air rotating detonation engines. Int. J. Hydrogen Energy, 39(28), pp. 15803-15809. 10.1016/j.ijhydene.2014.07.159.10.1016/j.ijhydene.2014.07.159 Search in Google Scholar

[206] Zhou, R. and Wang, J.P., 2012, Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines. Combust. Flame, 159(12), pp. 3632-3645. 10.1016/j.combustflame.2012.07.007.10.1016/j.combustflame.2012.07.007 Search in Google Scholar

[207] Shao, Y.T., Li, M. and Wang, J.P., 2010, Continuous detonation engine and effects of different types of nozzle on its propulsion performance. Chin. j. Aeronaut, 23(6), pp. 647-652. 10.1016/S1000-9361(09)60266-1.10.1016/S1000-9361(09)60266-1 Search in Google Scholar

[208] Shao, Y.T., Liu, M. and Wang, J.P., 2010, Numerical investigation of rotating detonation engine propulsive performance. Combust. Sci. Technol., 182(11-12), pp. 1586-1597. 10.1080/00102202.2010.497316.10.1080/00102202.2010.497316 Search in Google Scholar

[209] Shao, Y.T. and Wang, J.P., 2010, Change in continuous detonation wave propagation mode from rotating detonation to standing detonation. Chin. Phys. lett., 27(3), pp. 034705. 10.1088/0256-307X/27/3/034705.10.1088/0256-307X/27/3/034705 Search in Google Scholar

[210] Tang, X.M., Wang, J.P. and Shao, Y.T., 2015, Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor. Combust. Flame, 162(4), pp. 997-1008. 10.1016/j.combustflame.2014.09.023.10.1016/j.combustflame.2014.09.023 Search in Google Scholar

[211] Wang, Y. and Wang, J., 2015, Effect of equivalence ratio on the velocity of rotating detonation. Int. j. Hydrogen Energy, 40(25), pp. 7949-7955. 10.1016/j.ijhydene.2015.04.072.10.1016/j.ijhydene.2015.04.072 Search in Google Scholar

[212] Xie, Q. and Wang, B., 2014, “Performance analysis of rotating detonation rocket based combined cycle propulsion.” 6th European Conference For Aeronautics and Space Sciences. Search in Google Scholar

[213] Xie, Q. and Wang, B., 2015, “Performance analysis of propulsion powered by rotating detonation rocket based combined cycle.” 22rd International Society for Air Breathing Engines. Search in Google Scholar

[214] Wang, B., Xie, Q. and Zhang, H., 2013, “key technical analysis of liquid rocket based combined cycle propulsion.” 21rd International Society for Air Breathing Engines. Search in Google Scholar

[215] Wang, B., Xie, Q., Zou, M., et al., 2013, “Theoretic analysis of ejector mode of rocket based combined cycle propulsion.” 5th European Conference For Aeronautics and Space Sciences. Search in Google Scholar

[216] Wang, B., Xie, Q. and Wen, H., 2016, “Stabilities of rotation detonation.” 1st International Conference in Aerospace for Young Scientists. Search in Google Scholar

[217] Wen, H., Xie, Q. and Wang, B., 2017, “Stabilities of rotation detonation.” 31st International Symposium on Shock Waves-Part 1: fundamentals, Springer. Search in Google Scholar

[218] Xie, Q., Wen, H., Li, W., Ji, Z., Wang, B., et al., 2018, Analysis of Operating Diagram for H2/Air Rotating Detonation Combustors under lean Fuel Condition. Energy, 151, pp. 408-419. 10.1016/j.energy.2018.03.06210.1016/j.energy.2018.03.062 Search in Google Scholar

[219] Xie, Q., Wang, B., Wen, H., et al., 2018, Thermoacoustic Instabilities in an Annular Rotating Detonation Combustor Under Off-Design Condition. J. Propul. Power, 35(1), pp. 141-151. 10.2514/1.B37044.10.2514/1.B37044 Search in Google Scholar

[220] Xie, Q., Wang, B., Wen, H., et al., 2019, Enhancement of continuously rotating detonation in hydrogen and oxygen-enriched air. Proc. Combust. Inst., 37(3), pp. 3425-3432. 10.1016/j.proci.2018.08.046.10.1016/j.proci.2018.08.046 Search in Google Scholar

[221] Frolov, S.M., Dubrovskii, A.V., Ivanov, V.S., 2013, Three-dimensional numerical simulation of the operation of a rotating-detonation chamber with separate supply of fuel and oxidizer. Russian journal of Physical Chemistry B, 7(1), pp. 35-43. 10.1134/S1990793113010119.10.1134/S1990793113010119 Search in Google Scholar

[222] Schwer, D. and Kailasanath, K., 2011, Numerical investigation of the physics of rotating-detonation-engines. Proc. Combust. Inst., 33(2), pp. 2195-2202. 10.1016/j.proci.2010.07.050.10.1016/j.proci.2010.07.050 Search in Google Scholar

[223] Schwer, D. and Kailasanath, K., 2010, “Numerical investigation of rotating detonation engines.” 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 6880.10.2514/6.2010-6880 Search in Google Scholar

[224] Lin, W., Zhou, J., Liu, S., et al., 2015, Experimental study on propagation mode of H2/Air continuously rotating detonation wave. Int. J. Hydrogen Energy, 40(4), pp. 1980-1993. 10.1016/j.ijhydene.2014.11.119.10.1016/j.ijhydene.2014.11.119 Search in Google Scholar

[225] Wu, D., Zhou, R., Liu, M., et al., 2014, Numerical investigation of the stability of rotating detonation engines. Combust. Sci. Technol., 186(10-11), pp. 1699-1715. 10.1080/00102202.2014.935641.10.1080/00102202.2014.935641 Search in Google Scholar

[226] Thomas, G.O., Sutton, P. and Edwards, D.H., 1991, The behavior of detonation waves at concentration gradients. Combust. Flame, 84(3-4), pp. 312-322. 10.1016/0010-2180(91)90008-Y.10.1016/0010-2180(91)90008-Y Search in Google Scholar

[227] Ishii, K. and Kojima, M., 2007, Behavior of detonation propagation in mixtures with concentration gradients. Shock Waves, 17(1-2), pp. 95-102. 10.1007/s00193-007-0093-y.10.1007/s00193-007-0093-y Search in Google Scholar

[228] Boeck, L.R., Berger, F.M., Hasslberger, J., et al., 2016, Detonation propagation in hydrogen-air mixtures with transverse concentration gradients. Shock Waves, 26(2), pp. 181-192. 10.1007/s00193-015-0598-8.10.1007/s00193-015-0598-8 Search in Google Scholar

[229] Boulal, S., Vidal, P. and Zitoun, R., 2016, Experimental investigation of detonation quenching in non-uniform compositions. Combust. Flame, 2016, 172, pp. 222-233. 10.1016/j.combustflame.2016.07.022.10.1016/j.combustflame.2016.07.022 Search in Google Scholar

[230] Cullen, R.E., Nicholls, J.A. and Ragland, K.W., 1966, Feasibility studies of a rotating detonation wave rocket motor. j. Spacecr. Rockets, 3(6), pp. 893-898. 10.2514/3.28557.10.2514/3.28557 Search in Google Scholar

[231] Braun, E., Dunn, N. and Lu, F., 2010, “Testing of a continuous detonation wave engine with swirled injection.” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 146.10.2514/6.2010-146 Search in Google Scholar

[232] Bykovskii, F.A., Zhdan, S.A. and Vedernikov, E.F., 2014, Initiation of detonation of fuel-air mixtures in a flow-type annular combustor. Combustion, Explosion and Shock Waves, 50(2), pp. 214-222. 10.1134/S0010508214020130.10.1134/S0010508214020130 Search in Google Scholar

[233] Lu, F.K. and Braun, E., 2014, Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts. J. Propul. Power, 30(5), pp. 1125-1142. 10.2514/1.B3480210.2514/1.B34802 Search in Google Scholar

[234] Lentsch, A., Bec, R., Serre, L., et al., 2005, “Overview of current French activities on PDRE and continuous detonation wave rocket engines.” AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies Conference. 3232.10.2514/6.2005-3232 Search in Google Scholar

[235] Yang, C., Wu, X., Ma, H., et al., 2016, Experimental research on initiation characteristics of a rotating detonation engine. Exp. Therm. Fluid Sci, 71, pp. 154-163. 10.1016/j.expthermflusci.2015.10.01910.1016/j.expthermflusci.2015.10.019 Search in Google Scholar

[236] Dyer, R., Naples, A., Kaemming, T., et al., 2012, “Parametric testing of a unique rotating detonation engine design.” 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 121.10.2514/6.2012-121 Search in Google Scholar

[237] Driscoll, R., Anand, V., George, A., et al., 2015, “Investigation on RDE operation by geometric variation of the combustor annulus and nozzle exit area.” 9th US National combustion meeting. Search in Google Scholar

[238] Naples, A., Hoke, J., Schauer, F., 2014, “Rotating detonation engine interaction with an annular ejector.” 52nd Aerospace Sciences Meeting. 0287.10.2514/6.2014-0287 Search in Google Scholar

[239] Schwer, D. and Kailasanath, K., 2011, “Effect of inlet on fill region and performance of rotating detonation engines.” 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 6044.10.2514/6.2011-6044 Search in Google Scholar

[240] Schwer, D., Corrigan, A., Taylor, B., et al., 2013, “On reducing feedback pressure in rotating detonation engines.” 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 1178.10.2514/6.2013-1178 Search in Google Scholar

[241] Fotia, M., Hoke, J. and Schauer, F., 2014, “Propellant plenum dynamics in a two-dimensional rotating detonation experiment.” 52nd AIAA Aerospace Sciences Meeting. 1013.10.2514/6.2014-1013 Search in Google Scholar

[242] Anand, V., George, A., Driscoll, R., et al., 2015, “Statistical treatment of wave instability in rotating detonation combustors.” 53rd AIAA Aerospace Sciences Meeting. 1103.10.2514/6.2015-1103 Search in Google Scholar

[243] Pan, Z., Fan, B., Zhang, X., et al., 2011, Wavelet pattern and self-sustained mechanism of gaseous detonation rotating in a coaxial cylinder. Combust. Flame, 158(11), pp. 2220-2228. 10.1016/j.combustflame.2011.03.016.10.1016/j.combustflame.2011.03.016 Search in Google Scholar

[244] Anand, V., George, A.S., Driscoll, R., et al., 2016, Investigation of rotating detonation combustor operation with H2-air mixtures. Int. J. Hydrogen Energy, 41(2), pp. 1281-1292. 10.1016/j.ijhydene.2015.11.041.10.1016/j.ijhydene.2015.11.041 Search in Google Scholar

[245] Yao, S., Liu, M. and Wang, J., 2015, Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine. Combust. Sci. Technol., 187(12), pp. 1867-1878. 10.1080/00102202.2015.1067202.10.1080/00102202.2015.1067202 Search in Google Scholar

[246] Lin, W., Zhou, J., Liu, S., et al., 2015, Experimental study on propagation mode of H2/Air continuously rotating detonation wave. Int. J. Hydrogen Energy, 40(4), pp. 1980-1993. 10.1016/j.ijhydene.2014.11.11910.1016/j.ijhydene.2014.11.119 Search in Google Scholar

[247] Liu, S.j., Liu, W.D., Lin, Z.Y., et al., 2014, Research on Continuous Rotating Detonation Wave Propagation Process (I): One Direction Mode. J. Propul. Technol., 35(1), pp. 138-144 (in Chinese). Search in Google Scholar

[248] Liu, S.j., Liu, W.D., Lin, Z.Y., et al., 2014, Research on Continuous Rotating Detonation Wave Propagation Process (II): Two-Wave Collision Propagation Mode. J. Propul. Technol., 35(2), pp. 269-275 (in Chinese). Search in Google Scholar

[249] Wolanski, P., 2012, “Detonative propulsion.” Proceedings of the Combustion Institute, pp. 1-34.10.1016/j.proci.2012.10.005 Search in Google Scholar

eISSN:
2545-2835
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other, Geosciences, Materials Sciences, Physics