À propos de cet article

Citez

[1] Nowa Encyklopedia Powszechna PWN, 1995, Wydanie I, Wydawnictwa Naukowe PWN. Search in Google Scholar

[2] Konopka K., 2013, Biomimetyczne metody wytwarzania materiałów (eng. Biomimetic Methods for the Production of Materials), Oficyna Wydawnicza Politechniki Warszawskiej. Search in Google Scholar

[3] Shimomura M., 2010, The New Trends in Next Generation Biomimetics Material Technology: Learning from Biodiversity, Quarterly review No.. 37, pp. 53-75. Search in Google Scholar

[4] Baier H., Datashvili L., 2011, Active and Morphing Aerospace Structures–A Synthesis between advanced Materials, Structures and Mechanisms. Int. Journal of Aeronautical & Space Sci. 12(3), pp. 225–240.10.5139/IJASS.2011.12.3.225 Search in Google Scholar

[5] Galantai V., Sofla A., Meguid S., Tan K., Yeo W., 2012, Bio-inspired wing morphing for unmanned aerial vehicles using intelligent materials, International Journal of Mechanics and Materials in Design 8(1), pp.71-79.10.1007/s10999-011-9176-0 Search in Google Scholar

[6] Ozgen S., Yaman Y., Sahin M., Seber G., Sakarya E., 2010, Morphing Air Vehicle Concepts, International Unmanned Vehicle Workshop, Istanbul, Turkey. Search in Google Scholar

[7] Stenzel V., Wilke Y., Hage W., 2011, Drag-reducing paints for the reduction of fuel consumption in aviation and shipping, Progress in Organic Coatings 70, pp. 224-229.10.1016/j.porgcoat.2010.09.026 Search in Google Scholar

[8] Makarewicz G., 2005, Materiały inteligentne - zastosowanie w systemach aktywnej redukcji hałasu i drgań, Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy, Bezpieczeństwo Pracy, No. 12. Search in Google Scholar

[9] Yoon S., Kang L., Jo S., 2011, Development of Air Vehicle with Active Flapping and Twisting of Wing, Journal of Bionic Engineering 8, pp. 1-9.10.1016/S1672-6529(11)60007-3 Search in Google Scholar

[10] Song H., Hang T., Bo W., 2009, Flight mechanism and design of biomimetic micro air vehicles, Science in China Series E: Technological Sciences 52, No. 12, pp. 372-378.10.1007/s11431-009-0192-3 Search in Google Scholar

[11] Dudley R., 1990, Biomechanics of flight in neotropical butterflies: morphometrics and kinematics, J. exp. Biol. 150, pp. 37-53.10.1242/jeb.150.1.37 Search in Google Scholar

[12] http://pasja-lotnictwo.blogspot.com/2013/08/dlaczego-samolot-lata.html, access: 22.10.2017. Search in Google Scholar

[13] Fenelon M., Furukawa T., 2010, Design of an active flapping wing mechanism and a micro aerial vehicle using a rotary actuator, Mechanism and Machine Theory 45, pp. 137-146.10.1016/j.mechmachtheory.2009.01.007 Search in Google Scholar

[14] http://www.interhomeopathy.org/a-case-of-vanessa-atalanta, access: 22.10.2017. Search in Google Scholar

[15] http://archiwum.rp.pl/artykul/414431-Motyle-wzorem-dla-samolotow-szpiegowskich.html, access: 10.09.2014. Search in Google Scholar

[16] http://touch.caltech.edu/research/bat/bat.htm, access: 22.10.2017. Search in Google Scholar

[17] http://www.delfly.nl/history.html, access: 22.10.2017. Search in Google Scholar

[18] Czyż Z., Kamiński Z., 2004, Badania wirnika turbiny wiatrowej o regulowanym położeniu łopat roboczych, Politechnika Lubelska, Wydział Mechaniczny, Katedra Termodynamiki, Mechaniki Płynów i Napędów Lotniczych. Search in Google Scholar

eISSN:
2545-2835
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other, Geosciences, Materials Sciences, Physics