À propos de cet article

Citez

[1] Shalabi, F. I., Asi, I. M., & Qasrawi, H. Y. (2017). Effect of by-product steel slag on the engineering properties of clay soils. Journal of King Saud University-Engineering Sciences. 29(4), 394-399. https://doi.org/10.1016/j.jksues.2016.07.004. Search in Google Scholar

[2] Mousavi, S., & Wong, L. S. (2015). Mechanical behavior of compacted and stabilized clay with kaolin and cement. Jordan Journal of Civil Engineering. 9(4), 20-32. Search in Google Scholar

[3] James, J., & Pandian, P. K. (2018). Select geotechnical properties of a lime stabilized expansive soil amended with bagasse ash and coconut shell powder. Selected Scientific Papers-Journal of Civil Engineering. 13(s1), 45-60. https://doi.org/10.1515/sspjce-2018-0005. Search in Google Scholar

[4] Bera, A. K., & Kundu, S. (2016). Influence of fly ash content on compaction characteristics of fly ash clay mixture. Jordan Journal of Civil Engineering. 10(1), 55-66. Search in Google Scholar

[5] Oravec, J., & Eštoková, A. (2017). Comparison of Hexavalent Chromium Leaching Levels of Zeoliteand Slag-based Concretes. Selected Scientific Papers-Journal of Civil Engineering. 12(1), 29-36. https://doi.org/10.1515/sspjce-2017-0003. Search in Google Scholar

[6] Higgins, D. (2007). Briefing: GGBS and sustainability. Constr. Mater. 160 (3), 99 – 101. https://doi.org/10.1680/coma.2007.160.3.99. Search in Google Scholar

[7] Hadidane, H., Oucief, H., & Merzoud, M. (2018). Improving the behaviour of roads underlays by the use of industrial waste (blast furnace slag). Journal of Materials and environmental Sciences. 9 (3), 887-893. https://doi.org/10.26872/jmes.2018.9.3.98. Search in Google Scholar

[8] Yildirim, I. Z., & Prezzi, M. (2011). Chemical, mineralogical, and morphological properties of steel slag. Advances in Civil Engineering. 2011, 1-14. https://doi.org/10.1155/2011/463638. Search in Google Scholar

[9] Kim, M. S., Jun, Y., Lee, C., & Oh, J. E. (2013). Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cement and Concrete Research. 54, 208-214. https://doi.org/10.1016/j.cemconres.2013.09. Search in Google Scholar

[10] Häkkinen, T. (1993). The influence of slag content on the microstructure, permeability and mechanical properties of concrete. Part 1: Microstructural studies and basic mechanical properties. Cement and Concrete Research. 23(2), 407-421. https://doi.org/10.1016/0008-8846(93)90106-J. Search in Google Scholar

[11] Yum, W. S., Jeong, Y., Yoon, S., Jeon, D., Jun, Y., & Oh, J. E. (2017). Effects of CaCl2 on hydration and properties of lime (CaO)-activated slag/fly ash binder. Cement and Concrete Composites. 84, 111-123. https://doi.org/10.1016/j.cemconcomp.2017.09.001. Search in Google Scholar

[12] Tashima, M. M., Reig, L., Santini, M. A., Moraes, J. B., Akasaki, J. L., Payá, J., & Soriano, L. (2017). Compressive strength and microstructure of alkali-activated blast furnace slag/sewage sludge ash (GGBS/SSA) blends cured at room temperature. Waste and Biomass Valorization. 8(5), 1441-1451. https://doi.org/10.1007/s12649-016-9659-1. Search in Google Scholar

[13] Rashad, A. M., Bai, Y., Basheer, P. A. M., Milestone, N. B., & Collier, N. C. (2013). Hydration and properties of sodium sulfate activated slag. Cement and concrete composites. 37, 20-29. https://doi.org/10.1016/j.cemconcomp.2012.12.010. Search in Google Scholar

[14] Rani, T. G., Tulasi, K., & Krishna, Y. S. R. (2017). Ground granulated blast furnace slag as an expansive soil stabilizer. VFSTR Journal of STEM. 3(1), 2455-2062. Search in Google Scholar

[15] Obuzor, G. N., Kinuthia, J. M., & Robinson, R. B. (2011). Utilisation of lime activated GGBS to reduce the deleterious effect of flooding on stabilised road structural materials: A laboratory simulation. Engineering geology. 122(3-4), 334-338. https://doi.org/10.1016/j.enggeo.2011.06.010. Search in Google Scholar

[16] Sekhar, D., & Nayak, S. (2019). SEM and XRD investigations on lithomargic clay stabilized using granulated blast furnace slag and cement. International Journal of Geotechnical Engineering. 13(6), 615-629. https://doi.org/10.1080/19386362.2017.1380355. Search in Google Scholar

[17] Vindula, S. K., Chavali, R. V. P., Reddy, P. H. P., & Srinivas, T. (2019). Ground granulated blast furnace slag to control alkali induced swell in kaolinitic soils. International Journal of Geotechnical Engineering. 13(4), 377-384. https://doi.org/10.1080/19386362.2017.1359901. Search in Google Scholar

[18] Yi, Y., Gu, L., & Liu, S. (2015). Microstructural and mechanical properties of marine soft clay stabilized by lime-activated ground granulated blastfurnace slag. Applied Clay Science, 103, 71-76. https://doi.org/10.1016/j.clay.2014.11.005. Search in Google Scholar

[19] Celik, E., & Nalbantoglu, Z. (2013). Effects of ground granulated blastfurnace slag (GGBS) on the swelling properties of lime-stabilized sulfate-bearing soils. Engineering Geology. 163, 20-25. https://doi.org/10.1016/j.enggeo.2013.05.016. Search in Google Scholar

[20] Wild, S., Kinuthia, J. M., Jones, G. I., & Higgins, D. D. (1999). Suppression of swelling associated with ettringite formation in lime stabilized sulphate bearing clay soils by partial substitution of lime with ground granulated blastfurnace slag (GGBS). Engineering geology. 51(4), 257-277. https://doi.org/10.1016/S0013-7952(98)00069-6. Search in Google Scholar

[21] Guda, S. (2016). Efficacy of cement-stabilized GBS and GGBS cushions in improving the performance of expansive soils. Jordan Journal of Civil Engineering. 10(4), 529-542. Search in Google Scholar

[22] Islam, S., Haque, A., & Bui, H. (2016). 1-D compression behaviour of acid sulphate soils treated with alkali-activated slag. Materials. 9(4), 289. https://doi.org/10.3390/ma9040289. Search in Google Scholar

[23] Islam, S., Haque, A., Wilson, S. A., & Ranjith, P. G. (2015). Time-dependent strength and mineralogy of Lime-GGBS treated naturally occurring acid sulfate soils. Journal of Materials in Civil Engineering. 28(1), 04015077. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001333. Search in Google Scholar

[24] Islam, S., Haque, A., Wilson, S. A., & Ranjith, P. G. (2014). Improvement of acid sulfate soils using lime-activated slag. Proceedings of the Institution of Civil Engineers-Ground Improvement. 167(4), 235-248. https://doi.org/10.1680/grim.12.00033. Search in Google Scholar

[25] Islam, S., Haque, A., & Wilson, S. A. (2013). Effects of curing environment on the strength and mineralogy of lime-GGBS–treated acid sulphate soils. Journal of Materials in Civil Engineering. 26(5), 1003-1008. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000887. Search in Google Scholar

[26] Khayat, N., Nazarpour, A., & Ganjipour, S. S. (2021). Application of lime ground-granulated basic furnace slag (GGBS) in improving geotechnical properties of clayey soils in floodplain area, case study, Khuzestan plain. Journal of Advanced Applied Geology. 10(4), 669-682. DOI: 10.22055/AAG.2020.31309.2045. Search in Google Scholar

[27] Obuzor, G. N., Kinuthia, J. M., & Robinson, R. B. (2012). Soil stabilisation with lime-activated-GGBS- A mitigation to flooding effects on road structural layers/embankments constructed on floodplains. Engineering Geology. 15(1), 112-119. https://doi.org/10.1016/j.enggeo.2012.09.010 Search in Google Scholar

[28] Seco, A., Del Castillo, J. M., Espuelas, S., Marcelino, S., & García, B. (2020). Sulphate soil stabilisation with magnesium binders for road subgrade construction. International Journal of Pavement Engineering. 1-11. https://doi.org/10.1080/10298436.2020.1825711. Search in Google Scholar

[29] Zhang, Y., Ong, Y. J., & Yi, Y. (2022). Comparison between CaO-and MgO-activated ground granulated blast-furnace slag (GGBS) for stabilization/solidification of Zn-contaminated clay slurry. Chemosphere. 286, 131860. https://doi.org/10.1016/j.chemosphere.2021.131860. Search in Google Scholar

[30] Wang, F., Xu, J., Zhang, Y., Shen, Z., & Al-Tabbaa, A. (2021). MgO-GGBS Binder– Stabilized/Solidified PAE-Contaminated soil: strength and leachability in early stage. Journal of Geotechnical and Geoenvironmental Engineering. 147(8), 04021059. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002569. Search in Google Scholar

[31] Li, J. S., Chen, L., Zhan, B., Wang, L., Poon, C. S., & Tsang, D. C. (2021). Sustainable stabilization/solidification of arsenic-containing soil by blast slag and cement blends. Chemosphere. 271, 129868. https://doi.org/10.1016/j.chemosphere.2021.129868. Search in Google Scholar

[32] Keramatikerman, M., Chegenizadeh, A., & Nikraz, H. (2018). Effect of slag on restoration mechanical characteristics of Ethanol Gasoline–Contaminated Clay. Journal of environnemental engineering. 144(7), 06018001. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001386. Search in Google Scholar

[33] Skempton, A. W. (1953). The colloidal activity of clays. Selected papers on soil mechanics. 106-118. Search in Google Scholar

[34] Mitchell, J.K. (1976). Fundamentals of Soil Behavior. University of California., Berkeley. John Wiley & Sons, Inc., New-York, NY, 422 p. Search in Google Scholar

[35] AFNOR NF 14227 - 2. (2005). Mixtures treated with hydraulic binders. Specification. Part 2: Mixture treated with slag. Search in Google Scholar

[36] AFNOR NF P 94-051. (1993). Soils: Reconnaissance and tests – Determination of the Atterberg limits – Liquid limit to the cupel - Plasticity limit to the roller. Search in Google Scholar

[37] AFNOR NF P 94-093. (1999). Soils: Reconnaissance and Tests – Determination of the compaction references of a material – Normal Proctor test – Modified Proctor test. Search in Google Scholar

[38] AFNOR NF P 94-078. (1997). Soils: Reconnaissance and tests - CBR index after immersion - Immediate CBR index - Immediate bearing index - Measurement on sample compacted in the CBR mould. Search in Google Scholar

[39] AFNOR NF P 94-077. (1997). Soils: Reconnaissance and tests – Uniaxiale compression tests. Search in Google Scholar

[40] AFNOR NF P 94-071-1. (1997). Soils: Reconnaissance and tests – Box straight shear tests – Part 1: Direct shear. Search in Google Scholar

[41] Goodarzi, A. R., & Salimi, M. (2015). Stabilization treatment of a dispersive clayey soil using granulated blast furnace slag and basic oxygen furnace slag. Applied Clay Science. 108, 61-69. https://doi.org/10.1016/j.clay.2015.02.024. Search in Google Scholar

[42] Al-Rawas, A. A. (2002). Microfabric and mineralogical studies on the stabilization of an expansive soil using cement by-pass dust and some types of slags. Canadian geotechnical journal. 39(5), 1150-1167. https://doi.org/10.1139/t02-046. Search in Google Scholar

[43] Al-Mukhtar, M., Lasledj, A., & Alcover, J. F. (2010). Behaviour and mineralogy changes in lime-treated expansive soil at 20 C. Applied clay sciences. 50(2), 191-198. https://doi.org/j.clay.2010.07.023 Search in Google Scholar

[44] GTS. (2000). The technical guide, soils treatment with lime and/or hydraulic binders in backfill and subgrade. LCPC-SETRA, France. Search in Google Scholar

eISSN:
1338-7278
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other