Accès libre

Cardioprotective Effects of Physical Activity: Focus on Ischemia and Reperfusion

À propos de cet article

Citez

1. Sanchis-Gomar F, Perez-Quilis C, Leischik R, Lucia A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann Transl Med 2016; 4(13): 256.10.21037/atm.2016.06.33495872327500157 Search in Google Scholar

2. Boulghobra D, Coste F, Geny B, Reboul C. Exercise training protects the heart against ischemia-reperfusion injury: A central role for mitochondria? Free Radic Biol Med 2020; 152: 395-410. Search in Google Scholar

3. Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, et al. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell Physiol Biochem 2018; 46(4): 1650-67.10.1159/00048924129694958 Search in Google Scholar

4. Li WA, Ding Y. Cardiac preconditioning and cardiovascular diseases. Heart Mind 2017; 1: 17-21. Search in Google Scholar

5. Thijssen DHJ, Redington A, George KP, Hopman MTE, Jones H. Association of Exercise Preconditioning With Immediate Cardioprotection: A Review. JAMA Cardiol 2018; 3(2): 169-76.10.1001/jamacardio.2017.449529188285 Search in Google Scholar

6. Simonovic N, Jakovljevic V, Jeremic J, Finderle Z, Srejovic I, Nikolic Turnic T,et al. Comparative effects of calcium and potassium channel modulators on ischemia/ reperfusion injury in the isolated rat heart. Mol Cell Biochem 2019; 450(1-2): 175-85.10.1007/s11010-018-3384-y29922947 Search in Google Scholar

7. Nogueira-Ferreira R, Moreira-Gonçalves D, Silva AF, Duarte JA, Leite-Moreira A, Ferreira R, et al. Exercise preconditioning prevents MCT-induced right ventricle remodeling through the regulation of TNF superfamily cytokines. Int J Cardiol 2016; 203: 858-66.10.1016/j.ijcard.2015.11.06626599752 Search in Google Scholar

8. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007; 357: 1121–35.10.1056/NEJMra07166717855673 Search in Google Scholar

9. Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia- Dorado D, Hausenloy DJ, et al. Working Group of Cellular Biology of Heart of European Society of Cardiology. Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 2010; 87: 406–23.10.1093/cvr/cvq12920448097 Search in Google Scholar

10. Kleinbongard P, Heusch G. Extracellular signalling molecules in the ischaemic/reperfused heart - druggable and translatable for cardioprotection? Br J Pharmacol 2015; 172(8): 2010-25. Search in Google Scholar

11. Goto M, Liu Y, Yang XM, Ardell JL, Cohen MV, Downey JM. Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ Res 1995; 77: 611–21.10.1161/01.RES.77.3.611 Search in Google Scholar

12. Eitel I, Stiermaier T, Rommel KP, Fuernau G, Sandri M, Mangner N, et al. Cardioprotection by combined intrahospital remote ischaemic perconditioning and postconditioning in ST- elevation myocardial infarction: the randomized LIPSIA CONDITIONING trial. Eur Heart J 2015; 36: 3049–57.10.1093/eurheartj/ehv46326385956 Search in Google Scholar

13. Kokkonen JO, Kuoppala A, Saarinen J, Lindstedt KA, Kovanen PT. Kallidin- and bradykinin-degrading pathways in human heart. Circulation 1999; 99: 1984–90.10.1161/01.CIR.99.15.1984 Search in Google Scholar

14. Kokkonen JO, Lindstedt KA, Kuoppala A, Kovanen PT. Kinin-degrading pathways in the human heart. Trends Cardiovasc Med 2000; 10: 42–45.10.1016/S1050-1738(00)00034-7 Search in Google Scholar

15. Jalowy A, Schulz R, Dörge H, Behrends M, Heusch G. Infarct size reduction by AT1-receptor blockade through a signal cascade of AT2-receptor activation, bradykinin and prostaglandins in pigs. J Am Coll Cardiol 1998; 32: 1787–96.10.1016/S0735-1097(98)00441-0 Search in Google Scholar

16. Penna C, Mancardi D, Tullio F, Pagliaro P. Postconditioning and intermittent bradykinin induced cardioprotection require cyclooxygenase activation and prostacyclin release during reperfusion. Basic Res Cardiol 2008; 103: 368–77.10.1007/s00395-007-0695-7 Search in Google Scholar

17. Linz W, Wiemer G, Schölkens BA. Beneficial effects of bradykinin on myocardial energy metabolism and infarct size. Am J Cardiol 1997; 80: 118A–23A.10.1016/S0002-9149(97)00466-9 Search in Google Scholar

18. Schoemaker RG, van Heijningen CL. Bradykinin mediates cardiac preconditioning at a distance. Am J Physiol Heart Circ Physiol 2000; 278: H1571–H76.10.1152/ajpheart.2000.278.5.H1571 Search in Google Scholar

19. Weidenbach R, Schulz R, Gres P, Behrends M, Post H, Heusch G. Enhanced reduction of myocardial infarct size by combined ACE inhibition and AT(1)-receptor antagonism. Br J Pharmacol 2000; 131: 138–44.10.1038/sj.bjp.0703544 Search in Google Scholar

20. Krieg T, Cui L, Qin Q, Cohen MV, Downey JM. Mitochondrial ROS generation following acetylcholine-induced EGF receptor transactivation requires metalloproteinase cleavage of proHB-EGF. J Mol Cell Cardiol 2004; 36: 435–43.10.1016/j.yjmcc.2003.12.013 Search in Google Scholar

21. Papatheodorou I, Galatou E, Panagiotidis GD, Ravingerová T, Lazou A. Cardioprotective Effects of PPARβ/δ Activation against Ischemia/Reperfusion Injury in Rat Heart Are Associated with ALDH2 Upregulation, Amelioration of Oxidative Stress and Preservation of Mitochondrial Energy Production. Int J Mol Sci 2021; 22(12):6399.10.3390/ijms22126399 Search in Google Scholar

22. Cui W, Xin S, Zhu L, Wang M, Hao Y, Zhao Y, et al. Si-Miao-Yong-An Decoction Maintains the Cardiac Function and Protects Cardiomyocytes from Myocardial Ischemia and Reperfusion Injury. Evid Based Complement Alternat Med. 2021; 2021:8968464.10.1155/2021/8968464 Search in Google Scholar

23. Ji L, Zhang X, Liu W, et al. AMPK-regulated and Aktdependent enhancement of glucose uptake is essential in ischemic preconditioning-alleviated reperfusion injury. PLoS One 2013; 8(7): e69910.10.1371/journal.pone.0069910 Search in Google Scholar

24. Tomai F, Crea F, Gaspardone A, Versaci F, De Paulis R, Penta de Peppo A, et al. Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP- sensitive K+ channel blocker. Circulation 1994; 90: 700–5.10.1161/01.CIR.90.2.700 Search in Google Scholar

25. Liu Y, Tsuchida A, Cohen MV, Downey JM. Pretreatment with angiotensin II activates protein kinase C and limits myocardial infarction in isolated rabbit hearts. J Mol Cell Cardiol 1995; 27: 883–92.10.1016/0022-2828(95)90038-1 Search in Google Scholar

26. Pugsley MK. The diverse molecular mechanisms responsible for the actions of opioids on the cardiovascular system. Pharmacol Ther 2002; 93: 51–75.10.1016/S0163-7258(02)00165-1 Search in Google Scholar

27. Ikeda Y, Miura T, Sakamoto J, Miki T, Tanno M, Kobayashi H, et al. Activation of ERK and suppression of calcineurin are interacting mechanisms of cardioprotection afforded by delta-opioid receptor activation. Basic Res Cardiol 2006; 101: 418–26.10.1007/s00395-006-0595-216619106 Search in Google Scholar

28. Schultz JE, Rose E, Yao Z, Gross GJ. Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am J Physiol 1995; 268: H2157–H61.10.1152/ajpheart.1995.268.5.H2157 Search in Google Scholar

29. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an irondependent form of nonapoptotic cell death. Cell 2012; 149: 1060-7210.1016/j.cell.2012.03.042336738622632970 Search in Google Scholar

30. Tang D, Kroemer G. Ferroptosis Curr Biol 2020; 30: R1292–710.1016/j.cub.2020.09.068 Search in Google Scholar

31. Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 2017; 20: 1692–704.10.1016/j.celrep.2017.07.05528813679 Search in Google Scholar

32. Kardami E, Detillieux K, Ma X, Jiang Z, Santiago JJ, Jimenez SK, et al. Fibroblast growth factor-2 and cardioprotection. Heart Fail Rev 2007; 12: 267–77.10.1007/s10741-007-9027-017516168 Search in Google Scholar

33. Kudej RK, Shen YT, Peppas AP, Huang CH, Chen W, Yan L, et al. Obligatory role of cardiac nerves and alpha1- adrenergic receptors for the second window of ischemic preconditioning in conscious pigs. Circ Res 2006; 99: 1270–76.10.1161/01.RES.0000251282.79411.4417068289 Search in Google Scholar

34. Salie R, Moolman JA, Lochner A. The mechanism of beta-adrenergic preconditioning: roles for adenosine and ROS during triggering and mediation. Basic Res Cardiol 2012; 107: 281.10.1007/s00395-012-0281-522797560 Search in Google Scholar

35. Cao, B., Wang, H., Zhang, C., et al. Remote ischemic postconditioning (RIPC) of the upper arm results in protection from cardiac ischemia– reperfusion injury following primary percutaneous coronary intervention (PCI) for acute ST- segment elevation myocardial infarction (STEMI). Med. Sci. Monit 2018; 24: 1017–26. Search in Google Scholar

36. Shimizu M, Tropak M, Diaz RJ, Suto F, Surendra H, Kuzmin E,et al. Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting cross-species protection. Clin Sci (Lond) 2009; 117: 191–200.10.1042/CS2008052319175358 Search in Google Scholar

37. Deutsch E, Berger M, Kussmaul WG, Hirshfeld JW Jr, Herrmann HC, Laskey WK. Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical, hemodynamic, and metabolic features. Circulation 1990; 82: 2044–51.10.1161/01.CIR.82.6.2044 Search in Google Scholar

38. DP, Pugsley WB, Alkhulaifi AM, Kemp M, Hooper J, Yellon DM. Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery. Heart 1997; 77: 314–18.10.1136/hrt.77.4.3144847239155608 Search in Google Scholar

39. Traverse JH, Swingen CM, Henry TD, Fox J, Wang YL, Chavez IJ, et al. NHLBI- sponsored randomized trial of postconditioning during primary percutaneous coronary intervention for ST- elevation myocardial infarction. Circ. Res 2019; 124: 769–78. Search in Google Scholar

40. Higashi Y, Sasaki S, Kurisu S, Yoshimizu A, Sasaki N, Matsuura H, et al. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endotheliumderived nitric oxide. Circulation 1999; 100(11): 1194–202.10.1161/01.CIR.100.11.1194 Search in Google Scholar

41. Walsh JH, Yong G, Cheetham C, Watts GF, O’Driscoll GJ, Taylor RR, et al. Effects of exercise training on conduit and resistance vessel function in treated and untreated hypercholesterolaemic subjects. Eur Heart J 2003; 24(18): 1681–9.10.1016/S0195-668X(03)00384-1 Search in Google Scholar

42. Gokce N, Vita JA, Bader DS, Sherman DL, Hunter LM, Holbrook M, et al. Effect of exercise on upper and lower extremity endothelial function in patients with coronary artery disease. Am J Cardiol 2002; 90(2): 124–7.10.1016/S0002-9149(02)02433-5 Search in Google Scholar

43. Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L’Huillier I., et al. Postconditioning the human heart. Circulation 2005; 112: 2143–48.10.1161/CIRCULATIONAHA.105.55812216186417 Search in Google Scholar

44. Buscemi S, Canino B, Batsis JA, Buscemi C, Calandrino V, Mattina A, et al. Relationships between maximal oxygen uptake and endothelial function in healthy male adults: a preliminary study. Acta Diabetol 2013; 50(2): 135–41.10.1007/s00592-010-0229-x20953639 Search in Google Scholar

45. Edwards DG, Schofield RS, Lennon SL, Pierce GL, Nichols WW, Braith RW. Effect of exercise training on endothelial function in men with coronary artery disease. Am J Cardiol 2004; 93(5): 617–20.10.1016/j.amjcard.2003.11.03214996592 Search in Google Scholar

46. Moriguchi J, Itoh H, Harada S, Takeda K, Hatta T, Nakata T, et al. Low frequency regular exercise improves flow-mediated dilatation of subjects with mild hypertension. Hypertens Res 2005; 28(4): 315–21.10.1291/hypres.28.31516138561 Search in Google Scholar

47. Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med 2014; 48(16): 1227–34.10.1136/bjsports-2013-09257624144531 Search in Google Scholar

48. Morris JN, Everitt MG, Pollard R, Chave SP, and Semmence AM. Vigorous exercise in leisure-time: protection against coronary heart disease. Lancet 1980; 2: 1207–10..10.1016/S0140-6736(80)92476-9 Search in Google Scholar

49. Davison K, Bircher S, Hill A, Coates AM, Howe PR, Buckley JD. Relationships between obesity, cardiorespiratory fitness, and cardiovascular function. J Obes 2010; 2010: 191253.10.1155/2010/191253303856821331323 Search in Google Scholar

50. Lewis TV, Dart AM, Chin-Dusting JP, Kingwell BA. Exercise training increases basal nitric oxide production from the forearm in hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 1999; 19(11): 2782–7.10.1161/01.ATV.19.11.2782 Search in Google Scholar

51. Tjønna AE, Lee SJ, Rognmo Ø, Stølen TO, Bye A, Haram PM, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation 2008; 118(4): 346–54.10.1161/CIRCULATIONAHA.108.772822 Search in Google Scholar

52. Schjerve IE, Tyldum GA, Tjønna AE, Stølen T, Loennechen JP, Hansen HE, et al. Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clin Sci (London, England: 1979) 2008; 115(9): 283–93.10.1042/CS20070332 Search in Google Scholar

53. Mitranun W, Deerochanawong C, Tanaka H, Suksom D. Continuous vs interval training on glycemic control and macro- and microvascular reactivity in type 2 diabetic patients. Scand J Med Sci Sports 2014; 24(2): e69–76.10.1111/sms.12112 Search in Google Scholar

54. Moore RL and Palmer BM. Exercise training and cellular adaptations of normal and diseased hearts. Exerc Sport Sci Rev 1999; 27: 285–315.10.1249/00003677-199900270-00011 Search in Google Scholar

55. Vujic A, Lerchenmüller C, Wu TD, Guillermier C, Rabolli CP, Gonzalez E, et al. Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nat Commun 2018; 9(1): 1659.10.1038/s41467-018-04083-1 Search in Google Scholar

56. Powers SK, Demirel HA, Vincent HK, Coombes JS, Naito H, Hamilton KL, et al. Exercise training improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. Am J Physiol 1998; 275(5): R1468-77.10.1152/ajpregu.1998.275.5.R1468 Search in Google Scholar

57. Koch LG, Britton SL. Rat Models of Exercise for the Study of Complex Disease. Methods Mol Biol 2019; 2018: 309–17.10.1007/978-1-4939-9581-3_15 Search in Google Scholar

58. O. J. Kemi, J. P. Loennechen, U. Wisløff, O. Ellingsen. Intensity-controlled treadmill running in mice: cardiac and skeletal muscle hypertrophy. J Appl Physiol 2002; 93: 1301-9.10.1152/japplphysiol.00231.2002 Search in Google Scholar

59. Kemi OJ, Haram PM, Wisløff U, Ellingsen Ø. Aerobic fitness is associated with cardiomyocyte contractile capacity and endothelial function in exercise training and detraining. Circulation 2004; 109(23): 2897-904.10.1161/01.CIR.0000129308.04757.72 Search in Google Scholar

60. Wisløff U, Loennechen JP, Currie S, Smith GL, Ellingsen Ø. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovasc Res 2002; 54(1): 162-74.10.1016/S0008-6363(01)00565-X Search in Google Scholar

61. Lopaschuk GD, Rebeyka IM, and Allard MF. Metabolic modulation: a means to mend a broken heart. Circulation 2002; 105: 140–2.10.1161/circ.105.2.140 Search in Google Scholar

62. Rossello X, He Z, Yellon DM. Myocardial Infarct Size Reduction Provided by Local and Remote Ischaemic Preconditioning: References Values from the Hatter Cardiovascular Institute. Cardiovasc Drugs Ther 2018; 32(2): 127–33.10.1007/s10557-018-6788-8595815729656359 Search in Google Scholar

63. Sciacqua A, Candigliota M, Ceravolo R, Scozzafava A, Sinopoli F, Corsonello A, et al. Weight loss in combination with physical activity improves endothelial dysfunction in human obesity. Diabetes Care 2003; 26(6): 1673–8.10.2337/diacare.26.6.167312766092 Search in Google Scholar

64. Korge P, Honda HM, and Weiss JN. Effects of fatty acids in isolated mitochondria: implications for ischemic injury and cardioprotection. Am J Physiol Heart Circ Physiol 2003; 285: H259–H69.10.1152/ajpheart.01028.2002 Search in Google Scholar

65. Fiuza-Luces C, Santos-Lozano A, Joyner M, Carrera- Bastos P, Picazo O, Zugaza JL, et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol 2018; 15(12): 731–43.10.1038/s41569-018-0065-130115967 Search in Google Scholar

66. Thuny F, Lairez O, Roubille F, Mewton N, Rioufol G, Sportouch C, et al. Post-conditioning reduces infarct size and edema in patients with ST- segment elevation myocardial infarction. J. Am. Coll. Cardiol 2012; 59: 2175–81. Search in Google Scholar

67. Mewton N, Thibault H, Roubille F, Lairez O, Rioufol G, Sportouch C, et al. Postconditioning attenuates no- reflow in STEMI patients. Basic Res. Cardiol 2013; 108: 383. Search in Google Scholar

68. Pickard JM, Davidson SM, Hausenloy DJ, Yellon DM. Codependence of the neural and humoral pathways in the mechanism of remote ischemic conditioning. Basic Res Cardiol 2016; 111(4): 50.10.1007/s00395-016-0568-z491937027338249 Search in Google Scholar

69. Mora S, Cook N, Buring JE, Ridker PM, Lee IM. Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation 2007; 116(19): 2110–8.10.1161/CIRCULATIONAHA.107.729939211738117967770 Search in Google Scholar

70. Benstoem C, Stoppe C, Liakopoulos OJ, Ney J, Hasenclever D, Meybohm P, et al. Remote ischaemic preconditioning for coronary artery bypass grafting (with or without valve surgery). Cochrane Database Syst Rev 2017; (5): CD011719.10.1002/14651858.CD011719.pub3 Search in Google Scholar

71. Hausenloy DJ, Barrabes JA, Botker HE, Davidson SM, Di Lisa F, Downey J, et al. Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Res Cardiol 2016; 111(6): 70.10.1007/s00395-016-0588-8507312027766474 Search in Google Scholar

72. Rahbek SK, Farup J, de Paoli F, Vissing K. No differential effects of divergent isocaloric supplements on signaling for muscle protein turnover during recovery from muscle-damaging eccentric exercise. Amino Acids 2015; 47(4): 767–78.10.1007/s00726-014-1907-825559753 Search in Google Scholar

73. Moller AB, Lonbro S, Farup J, Voss TS, Rittig N, Wang J, et al. Molecular and cellular adaptations to exercise training in skeletal muscle from cancer patients treated with chemotherapy. J Cancer Res Clin Oncol 2019; 145(6): 1449–60.10.1007/s00432-019-02911-530968255 Search in Google Scholar

74. Penna C, Alloatti G, Crisafulli A. Mechanisms Involved in Cardioprotection Induced by Physical Exercise. Antioxid Redox Signal 2020; 32(15): 1115–34.10.1089/ars.2019.800931892282 Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, other