Accès libre

Methods for Determination of Meropenem Concentration in Biological Samples

À propos de cet article

Citez

1. Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci U S A. 2018;115(15):E3463-E3470.10.1073/pnas.1717295115589944229581252 Search in Google Scholar

2. McWhinney BC, Wallis SC, Hillister T, Roberts JA, Lipman J, Ungerer JP. Analysis of 12 beta-lactam antibiotics in human plasma by HPLC with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878(22):2039-43.10.1016/j.jchromb.2010.05.02720561826 Search in Google Scholar

3. Ohmori T, Suzuki A, Niwa T, Ushikoshi H, Shirai K, Yoshida S, et al. Simultaneous determination of eight β- lactam antibiotics in human serum by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879(15-16):1038-42.10.1016/j.jchromb.2011.03.00121459052 Search in Google Scholar

4. Wong G, Briscoe S, McWhinney B, Ally M, Ungerer J, Lipman J, et al. Therapeutic drug monitoring of β-lactam antibiotics in the critically ill: direct measurement of unbound drug concentrations to achieve appropriate drug exposures. J Antimicrob Chemother. 2018;73(11):3087-3094.10.1093/jac/dky31430137377 Search in Google Scholar

5. Drusano GL. Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol. 2004;2(4):289-300.10.1038/nrmicro86215031728 Search in Google Scholar

6. Roberts JA, Paratz JD, Lipman J. Continuous infusion of beta-lactams in the intensive care unit--best way to hit the target? Crit Care Med. 2008;36(5):1663-4.10.1097/CCM.0b013e318170462518448930 Search in Google Scholar

7. Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 2009;37(3):840-5110.1097/CCM.0b013e3181961bff19237886 Search in Google Scholar

8. Wolff F, Deprez G, Seyler L, Taccone F, Hites M, Gulbis B, et al. Rapid quantification of six β-lactams to optimize dosage regimens in severely septic patients. Talanta. 2013;103:153-60.10.1016/j.talanta.2012.10.02423200371 Search in Google Scholar

9. McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31(4):345-51.10.1016/j.ijantimicag.2007.12.00918313273 Search in Google Scholar

10. Craig W. Pharmacodynamics of antimicrobial agents as a basis for determining dosage regimens. Eur J Clin Microbiol Infect Dis. 1993;12 Suppl 1:S6-8.10.1007/BF023898708477766 Search in Google Scholar

11. Jacobs MR. Optimisation of antimicrobial therapy using pharmacokinetic and pharmacodynamic parameters. Clin Microbiol Infect. 2001;7(11):589-96.10.1046/j.1198-743x.2001.00295.x11737083 Search in Google Scholar

12. Roth T, Fiedler S, Mihai S, Parsch H. Determination of meropenem levels in human serum by high-performance liquid chromatography with ultraviolet detection. Biomed Chromatogr. 2017;31(5).10.1002/bmc.388027797104 Search in Google Scholar

13. Zhao HY, Gu J, Lyu J, Liu D, Wang YT, Liu F, et al. Pharmacokinetic and Pharmacodynamic Efficacies of Continuous versus Intermittent Administration of Meropenem in Patients with Severe Sepsis and Septic Shock: A Prospective Randomized Pilot Study. Chin Med J (Engl). 2017;130(10):1139-1145.10.4103/0366-6999.205859544301828485312 Search in Google Scholar

14. Nicolau DP. Pharmacokinetic and pharmacodynamic properties of meropenem. Clin Infect Dis. 2008; 47(Suppl 1):S32–S40.10.1086/59006418713048 Search in Google Scholar

15. Kong L, Tang Y, Zhang X, Lu G, Yu M, Shi Q, et al. Pharmacokinetic/pharmacodynamic analysis of meropenem for the treatment of nosocomial pneumonia in intracerebral hemorrhage patients by Monte Carlo simulation. Ann Pharmacother. 2017;51(11):970–975.10.1177/106002801771971528677407 Search in Google Scholar

16. Roberts JA, Ulldemolins M, Roberts MS, McWhinney B, Ungerer J, Paterson DL, et al. Therapeutic drug monitoring of beta-lactams in critically ill patients: proof of concept. Int J Antimicrob Agents. 2010;36(4):332-9.10.1016/j.ijantimicag.2010.06.00820685085 Search in Google Scholar

17. Carlier M, Stove V, De Waele JJ, Verstraete AG. Ultrafast quantification of β-lactam antibiotics in human plasma using UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;978-979:89-94.10.1016/j.jchromb.2014.11.03425531875 Search in Google Scholar

18. Kropp, H., et al. 1976. Abstr. 16th Intersci. Conf. Antimicrob. Agents Chemother., abstr. 228. American Society for Microbiology, Washington, DC. Search in Google Scholar

19. Albers-Schonberg G, Arison BH, Hensens OD, Hirshfield J, Hoogsteen K, Kaczka EA, et al. Structure and absolute configuration of thienamycin. Journal of the American Chemical Society. 1978;100 (20):6491-6499.10.1021/ja00488a038 Search in Google Scholar

20. Kahan JS, Kahan FM, Goegelman R, Currie SA, Jackson M, Stapley EO, et al. Thienamycin, a new beta-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J Antibiot (Tokyo). 1979;32(1):1-12.10.7164/antibiotics.32.1761989 Search in Google Scholar

21. Moellering RC Jr, Eliopoulos GM, Sentochnik DE. The carbapenems: new broad spectrum beta-lactam antibiotics. J Antimicrob Chemother. 1989;24 Suppl A:1-7.10.1093/jac/24.suppl_A.12681123 Search in Google Scholar

22. Basker MJ, Boon RJ, Hunter PA. Comparative antibacterial properties in vitro of seven olivanic acid derivatives: MM 4550, MM 13902, MM 17880, MM 22380, MM 22381, MM 22382 and MM 22383. J Antibiot (Tokyo). 1980;33(8):878-84.10.7164/antibiotics.33.878 Search in Google Scholar

23. Fukasawa M, Sumita Y, Harabe ET, Tanio T, Nouda H, Kohzuki T, et al. Stability of meropenem and effect of 1 beta-methyl substitution on its stability in the presence of renal dehydropeptidase I. Antimicrob Agents Chemother. 1992;36(7):1577-9.10.1128/AAC.36.7.1577 Search in Google Scholar

24. Kropp H, Sundelof JG, Hajdu R, Kahan FM. Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase, dehydropeptidase. Antimicrob Agents Chemother. 1982;22(1):62-70.10.1128/AAC.22.1.62 Search in Google Scholar

25. Christensen, B. G. (1981). Structure activity relationships in beta-lactam antibiotics. In BetaLactam Antibiotics. Mode of Action, New Developments, and Future Prospects (Salton, M. E. J. & Schockman, G. D., Eds), pp.101-25. Academic Press, London. Search in Google Scholar

26. Sunagawa, M., Matsumura, H., Inoue, T., Fukasawa, N. & Kato, M. (1987). SM-7338 a new carbapenem antibiotic: structure-activity relations and physiochemical properties. In Proceedings and Abstracts of the Twenty- Seventh Interscience Conference on Antimicrobial Agents and Chemotherapy, New York, 1987. Abstract 752, p. 228. American Society for Microbiology, Washington, DC. Search in Google Scholar

27. Drusano G. Meropenem: laboratory and clinical data. Clin Microbiol Infect. 1997;3 Suppl 4:S51-S59.10.1016/S1198-743X(14)65034-5 Search in Google Scholar

28. Paczkowska M, Garbacki P, Zalewski P, Talaczyńska A, Cielecka-Piontek J. [Meropenem--therapeutic recommendation after twenty years of presence on pharmaceutical market]. Postepy Higieny i Medycyny Doswiadczalnej (Online). 2014;68:441-445.10.5604/17322693.110154124864096 Search in Google Scholar

29. Kipper K, Anier K, Leito I, Karjagin J, Oselin K, Herodes K. Rapid Determination of Meropenem in Biological Fluids by LC: Comparison of Various Methods for Sample Preparation and Investigation of Meropenem Stability. Chromatographia. 2009; 70(9-10): 1423–1427.10.1365/s10337-009-1304-8 Search in Google Scholar

30. Dincel D, Sagirli O, Topcu G. A High-Performance Liquid Chromatographic Method for the Determination of Meropenem in Serum. J Chromatogr Sci. 2020;58(2):144-150.10.1093/chromsci/bmz08731738410 Search in Google Scholar

31. Craig WA. The pharmacology of meropenem, a new carbapenem antibiotic. Clin Infect Dis. 1997;24(Suppl 2):S266–75.10.1093/clinids/24.Supplement_2.S266 Search in Google Scholar

32. MacGowan AP, Wise R. Establishing MIC breakpoints and the interpretation of in vitro susceptibility tests. J Antimicrob Chemother. 2001;48 Suppl 1:17-28.10.1093/jac/48.suppl_1.1711420334 Search in Google Scholar

33. Mouton JW, Touzw DJ, Horrevorts AM, Vinks AA. Comparative pharmacokinetics of the carbapenems: clinical implications. Clin Pharmacokinet. 2000;39(3):185-201.10.2165/00003088-200039030-0000211020134 Search in Google Scholar

34. Mouton JW, van den Anker JN. Meropenem Clinical Pharmacokinetics. Clin. Pharmacokinet. 1995;28(4):275-286. Search in Google Scholar

35. de Louvois J. Factors influencing the assay of antimicrobial drugs in clinical samples by the agar plate diffusion method. J Antimicrob Chemother. 1982;9(4):253-65.10.1093/jac/9.4.253 Search in Google Scholar

36. Fleming, A. Streptococcal meningitis treated with penicillin. Measurement of bacteriostatic power of blood and cerebrospinal fluid. Lancet. 1943;2:434-438.10.1016/S0140-6736(00)87452-8 Search in Google Scholar

37. Fleming, A. (1946). Bacteriological control of penicillin therapy. In Penicillin: Its Practical Application, 1st edn (Fleming, A., Ed.), pp. 76-92. Butterworth, London. Search in Google Scholar

38. Heatley NG. A method for the assay of penicillin. Biochem J. 1944;38(1):61-65.10.1042/bj0380061125802416747749 Search in Google Scholar

39. Vakulenko NA. [Determination of erythromycin in serum and urine by the agar diffusion method]. Antibiotiki. 1961;6:315-8. Search in Google Scholar

40. Bennett JV, Brodie JL, Benner EJ, Kirby WM. Simplified, accurate method for antibiotic assay of clinical specimens. Appl Microbiol. 1966;14(2):170-7.10.1128/am.14.2.170-177.19665466454959982 Search in Google Scholar

41. Simon HJ, Yin EJ. Microbioassay of antimicrobial agents. Appl Microbiol. 1970;19(4):573-9.10.1128/am.19.4.573-579.19703767404986725 Search in Google Scholar

42. Kabay A. Rapid quantitative microbiological assay of antibiotics and chemical preservatives of a nonantibiotic nature. Appl Microbiol. 1971;22(5):752-5.10.1128/am.22.5.752-755.19713764115132091 Search in Google Scholar

43. Levison ME. Microbiological agar diffusion assay for metronidazole concentrations in serum. Antimicrob Agents Chemother. 1974;5(5):466-8.10.1128/AAC.5.5.4664289964462462 Search in Google Scholar

44. Wahlig H. Eine mikrobiologische Schnellmethode zur Bestimmung von Antibiotikakonzentrationen während der Therapie [A microbiological method for the rapid determination of antibiotic concentrations during therapy (author’s transl)]. Infection. 1977;5(2):117-8.10.1007/BF0164209327723000 Search in Google Scholar

45. Uihlein M, Klesel N, Seeger K. Determination of cefpirome (HR 810) in serum and urine. Infection. 1988;16(2):135-40.10.1007/BF016443233372025 Search in Google Scholar

46. Janković SM, Ninković V. Monitoring of serum concentrations of antibiotics by microbiological method: a oneyear experience. Med Pregl. 1998;51(7–8):333–42. Search in Google Scholar

47. Cauwelier B, Gordts B, Descheemaecker P, Van Landuyt H. Evaluation of a disk diffusion method with cefoxitin (30 microg) for detection of methicillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis. 2004;23(5):389-92.10.1007/s10096-004-1130-815112072 Search in Google Scholar

48. Bonev B, Hooper J, Parisot J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J Antimicrob Chemother. 2008;61(6):1295-301.10.1093/jac/dkn090 Search in Google Scholar

49. Galani I, Kontopidou F, Souli M, Rekatsina PD, Koratzanis E, Deliolanis J, et al. Colistin susceptibility testing by Etest and disk diffusion methods. Int J Antimicrob Agents. 2008;31(5):434-9.10.1016/j.ijantimicag.2008.01.011 Search in Google Scholar

50. Benedict RG, Stodola FH. Modification of an Agar Diffusion Method of Assay for Polymyxin. J Bacteriol. 1948;55(2):286.10.1128/jb.55.2.286-286.1948 Search in Google Scholar

51. Kureishi A, Jewesson PJ, Bartlett KH, Cole CD, Chow AW. Application of a modified bioassay for monitoring serum teicoplanin and vancomycin in febrile neutropenic patients. Antimicrob Agents Chemother. 1990;34(9):1642-7.10.1128/AAC.34.9.1642 Search in Google Scholar

52. Yamamoto CH, Pinto TJ. Rapid determination of neomycin by a microbiological agar diffusion assay using triphenyltetrazolium chloride. J AOAC Int. 1996;79(2):434-440.10.1093/jaoac/79.2.434 Search in Google Scholar

53. Luis Esaú LJ, Christian Rodolfo RG, Melissa HD, Claudia Adriana CC, Rodolfo GC, Rafael FC. An alternative disk diffusion test in broth and macrodilution method for colistin susceptibility in Enterobacteriales. J Microbiol Methods. 2019;167:105765.10.1016/j.mimet.2019.105765 Search in Google Scholar

54. White LO. HPLC in clinical microbiology laboratories. J Antimicrob Chemother. 1981;8(1):1-3.10.1093/jac/8.1.1 Search in Google Scholar

55. Guitton J, Laffont A, Bruzeau J, Rochet-Mingret L, Bonnefoy M, Bureau J. Determination of ceftazidime in plasma using high-performance liquid chromatography and electrochemical detection. Application for individualizing dosage regimens in elderly patients. J Chromatogr B Biomed Sci Appl. 1998;719(1-2):151-7.10.1016/S0378-4347(98)00333-8 Search in Google Scholar

56. Demetriades JL, Souder PR, Entwistle LA, Vincek WC, Musson DG, Bayne WF. High-performance liquid chromatographic determination of cilastatin in biological fluids. J Chromatogr. 1986;382:225-31.10.1016/S0378-4347(00)83520-3 Search in Google Scholar

57. Iwaki K, Okumura N, Yamazaki M, Nimura N, Kinoshita T. Precolumn derivatization technique for highperformance liquid chromatographic determination of penicillins with fluorescence detection. J Chromatogr. 1990;504(2):359–367.10.1016/S0021-9673(01)89539-X Search in Google Scholar

58. Li J, Milne RW, Nation RL, Turnidge JD, Coulthard K, Johnson DW. A simple method for the assay of colistin in human plasma, using pre-column derivatization with 9-fluorenylmethyl chloroformate in solid-phase extraction cartridges and reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 2001;761(2):167-75.10.1016/S0378-4347(01)00326-7 Search in Google Scholar

59. Schulte S, Ackermann T, Bertram N, Sauerbruch T, Paar WD. Determination of the newer quinolones levofloxacin and moxifloxacin in plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr Sci. 2006;44(4):205–208.10.1093/chromsci/44.4.205 Search in Google Scholar

60. De Smet J, Boussery K, Colpaert K, De Sutter P, De Paepe P, Decruyenaere J, et al. Pharmacokinetics of fluoroquinolones in critical care patients: a bio-analytical HPLC method for the simultaneous quantification of ofloxacin, ciprofloxacin and moxifloxacin in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(10):961-7.10.1016/j.jchromb.2009.02.039 Search in Google Scholar

61. Greene SV, Abdalla T, Morgan SL, Bryan CS. High-performance liquid chromatographic analysis of vancomycin in plasma, bone, atrial appendage tissue and pericardial fluid. J Chromatogr. 1987;417(1):121-8.10.1016/0378-4347(87)80097-X Search in Google Scholar

62. Soto-Otero R, Mendez-Alvarez E, Sierra-Paredes G, Galan- Valiente J, Aguilar-Veiga E, Sierra-Marcuño G. A rapid method for the determination of benzylpenicillin in serum by reversed-phase HPLC. Biomed Chromatogr. 1987;2(4):177-9.10.1002/bmc.1130020411 Search in Google Scholar

63. Marunaka T, Matsushima E, Maniwa M. Determination of cefodizime in biological materials by high-performance liquid chromatography. J Chromatogr. 1987;420(2):329-39.10.1016/0378-4347(87)80188-3 Search in Google Scholar

64. Carlhant D, Le Bot MA, Guedes Y, Riche C, Mimouri F, Colin J, et al. Solid phase extraction and HPLC determination of spiramycin in plasma and vitreous concentrations. Biomed Chromatogr. 1989;3(1):1-4.10.1002/bmc.11300301022706358 Search in Google Scholar

65. Holt DE, de Louvois J, Hurley R, Harvey D. A high performance liquid chromatography system for the simultaneous assay of some antibiotics commonly found in combination in clinical samples. J Antimicrob Chemother. 1990;26(1):107-15.10.1093/jac/26.1.1072211431 Search in Google Scholar

66. Mendez-Alvarez E, Soto-Otero R, Sierra-Paredes G, Aguilar-Veiga E, Galan-Valiente J, Sierra-Marcuño G. A reversed phase liquid chromatographic method for the simultaneous determination of several common penicillins in human serum. Biomed Chromatogr. 1991;5(2):78-82.10.1002/bmc.11300502071868262 Search in Google Scholar

67. Ocaña González J, Callejón Mochón M. Barragán de la Rosa F. Simultaneous Determination of Cefepime and the Quinolones Garenoxacin, Moxifloxacin and Levofloxacin in Human Urine by HPLC-UV. Microchim Acta 2005;151:39-45.10.1007/s00604-005-0391-y Search in Google Scholar

68. Xu YH, Li D, Liu XY, Li YZ, Lu J. High performance liquid chromatography assay with ultraviolet detection for moxifloxacin: validation and application to a pharmacokinetic study in Chinese volunteers. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878(32):3437-41.10.1016/j.jchromb.2010.10.02421093388 Search in Google Scholar

69. Fortuna S, De Pascale G, Ragazzoni E, Antonelli M, Navarra P. Validation of a new HPLC-UV method for determination of the antibiotic linezolid in human plasma and in bronchoalveolar lavage. Biomed Chromatogr. 2013;27(11):1489-96.10.1002/bmc.294723813438 Search in Google Scholar

70. Vella J, Busuttil F, Bartolo NS, Sammut C, Ferrito V, Serracino-Inglott A, et al. A simple HPLC-UV method for the determination of ciprofloxacin in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;989:80-5.10.1016/j.jchromb.2015.01.00625813900 Search in Google Scholar

71. Palma EC, Laureano JV, de Araújo BV, Meinhardt NG, Stein AT, Dalla Costa T. Fast and sensitive HPLC/UV method for cefazolin quantification in plasma and subcutaneous tissue microdialysate of humans and rodents applied to pharmacokinetic studies in obese individuals. Biomed Chromatogr. 2018;32(8):e4254.10.1002/bmc.425429656496 Search in Google Scholar

72. Ezquer-Garin C, Ferriols-Lisart R, Alós-Almiñana M, Aguilar-Aguilar G, Belda-Nacher JF, et al. Validated HPLC-UV detection method for the simultaneous determination of ceftolozane and tazobactam in human plasma. Bioanalysis. 2018;10(7):461-473.10.4155/bio-2017-025729633862 Search in Google Scholar

73. Zheng Y, Wang Z, Lui G, Hirt D, Treluyer JM, Benaboud S, et al. Simultaneous quantification of levofloxacin, pefloxacin, ciprofloxacin and moxifloxacin in microvolumes of human plasma using high-performance liquid chromatography with ultraviolet detection. Biomed Chromatogr. 2019;33(5):e4506.10.1002/bmc.450630743308 Search in Google Scholar

74. Kotani A, Hirai J, Hamada Y, Fujita J, Hakamata H. Determination of ceftriaxone concentration in human cerebrospinal fluid by high-performance liquid chromatography with UV detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1124:161-164.10.1016/j.jchromb.2019.06.00831202181 Search in Google Scholar

75. Dorn C, Schießer S, Wulkersdorfer B, Hitzenbichler F, Kees MG, Zeitlinger M. Determination of free clindamycin, flucloxacillin or tedizolid in plasma: Pay attention to physiological conditions when using ultrafiltration. Biomed Chromatogr. 2020;34(6):e4820.10.1002/bmc.482032115736 Search in Google Scholar

76. Cairoli S, Simeoli R, Tarchi M, Dionisi M, Vitale A, Perioli L, et al. A new HPLC-DAD method for contemporary quantification of 10 antibiotics for therapeutic drug monitoring of critically ill pediatric patients. Biomed Chromatogr. 2020;34(10):e4880.10.1002/bmc.488032396238 Search in Google Scholar

77. Roth T, Weber L, Niestroj M, Cipa F, Löscher A, Mihai S, et al. Simultaneous determination of six antibiotics in human serum by high-performance liquid chromatography with UV detection. Biomed Chromatogr. 2021;35(3):e5010.10.1002/bmc.501033119907 Search in Google Scholar

78. Li YX, Neufeld K, Chastain J, Curtis A, Velagaleti P. Sensitive determination of erythromycin in human plasma by LC-MS/MS. J Pharm Biomed Anal. 1998;16(6):961-70.10.1016/S0731-7085(97)00095-2 Search in Google Scholar

79. Cass RT, Villa JS, Karr DE, Schmidt DE Jr. Rapid bioanalysis of vancomycin in serum and urine by high-performance liquid chromatography tandem mass spectrometry using on-line sample extraction and parallel analytical columns. Rapid Commun Mass Spectrom. 2001;15(6):406-12.10.1002/rcm.24611291118 Search in Google Scholar

80. Phillips OA, Abdel-Hamid ME, al-Hassawi NA. Determination of linezolid in human plasma by LC-MS-MS. Analyst. 2001;126(5):609-14.10.1039/b100076o11394301 Search in Google Scholar

81. Jansson B, Karvanen M, Cars O, Plachouras D, Friberg LE. Quantitative analysis of colistin A and colistin B in plasma and culture medium using a simple precipitation step followed by LC/MS/MS. J Pharm Biomed Anal. 2009;49(3):760-7.10.1016/j.jpba.2008.12.01619157746 Search in Google Scholar

82. Gobin P, Lemaître F, Marchand S, Couet W, Olivier JC. Assay of colistin and colistin methanesulfonate in plasma and urine by liquid chromatography-tandem mass spectrometry. Antimicrob Agents Chemother. 2010;54(5):1941-8.10.1128/AAC.01367-09286360920176909 Search in Google Scholar

83. Gika HG, Michopoulos F, Divanis D, Metalidis S, Nikolaidis P, Theodoridis GA. Daptomycin determination by liquid chromatography-mass spectrometry in peritoneal fluid, blood plasma, and urine of clinical patients receiving peritoneal dialysis treatment. Anal Bioanal Chem. 2010;397(6):2191-7.10.1007/s00216-010-3639-220336449 Search in Google Scholar

84. Cirić B, Jandrić D, Kilibarda V, Jović-Stosić J, Dragojević- Simić V, Vucinić S. [Simultaneous determination of amoxicillin and clavulanic acid in the human plasma by high performance liquid chromatography-mass spectrometry (UPLC/MS)]. Vojnosanit Pregl. 2010;67(11):887-92.10.2298/VSP1011887C Search in Google Scholar

85. Jin HE, Kim IB, Kim YC, Cho KH, Maeng HJ. Determination of cefadroxil in rat plasma and urine using LCMS/ MS and its application to pharmacokinetic and urinary excretion studies. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;947-948:103-10.10.1016/j.jchromb.2013.12.02724412692 Search in Google Scholar

86. Cazorla-Reyes R, Romero-González R, Frenich AG, Rodríguez Maresca MA, Martínez Vidal JL. Simultaneous analysis of antibiotics in biological samples by ultra high performance liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal. 2014;89:203-12.10.1016/j.jpba.2013.11.00424291112 Search in Google Scholar

87. Parker SL, Lipman J, Roberts JA, Wallis SC. A simple LC-MS/MS method using HILIC chromatography for the determination of fosfomycin in plasma and urine: application to a pilot pharmacokinetic study in humans. J Pharm Biomed Anal. 2015;105:39-45.10.1016/j.jpba.2014.11.04225527980 Search in Google Scholar

88. Zander J, Maier B, Suhr A, Zoller M, Frey L, Teupser D, et al. Quantification of piperacillin, tazobactam, cefepime, meropenem, ciprofloxacin and linezolid in serum using an isotope dilution UHPLC-MS/MS method with semi-automated sample preparation. Clin Chem Lab Med. 2015;53(5):781-91.10.1515/cclm-2014-074625301676 Search in Google Scholar

89. Parker SL, Guerra Valero YC, Ordóñez Mejia JL, Roger C, Lipman J, Roberts JA, et al. An LC-MS/MS method to determine vancomycin in plasma (total and unbound), urine and renal replacement therapy effluent. Bioanalysis. 2017;9(12):911-924.10.4155/bio-2017-001928617036 Search in Google Scholar

90. Wijma RA, Bahmany S, Wilms EB, van Gelder T, Mouton JW, Koch BCP. A fast and sensitive LC-MS/MS method for the quantification of fosfomycin in human urine and plasma using one sample preparation method and HILIC chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1061-1062:263-269.10.1016/j.jchromb.2017.07.03628759841 Search in Google Scholar

91. Lefeuvre S, Bois-Maublanc J, Hocqueloux L, Bret L, Francia T, Eleout-Da Violante C, et al. A simple ultrahigh- performance liquid chromatography-high resolution mass spectrometry assay for the simultaneous quantification of 15 antibiotics in plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1065-1066:50-58.10.1016/j.jchromb.2017.09.01428946125 Search in Google Scholar

92. Paal M, Zoller M, Schuster C, Vogeser M, Schütze G. Simultaneous quantification of cefepime, meropenem, ciprofloxacin, moxifloxacin, linezolid and piperacillin in human serum using an isotope-dilution HPLC-MS/MS method. J Pharm Biomed Anal. 2018;152:102-110.10.1016/j.jpba.2018.01.03129414000 Search in Google Scholar

93. El-Najjar N, Hösl J, Holzmann T, Jantsch J, Gessner A. UPLC-MS/MS method for therapeutic drug monitoring of 10 antibiotics used in intensive care units. Drug Test Anal. 2018;10(3):584-591.10.1002/dta.225328753737 Search in Google Scholar

94. Magréault S, Leroux S, Touati J, Storme T, Jacqz- Aigrain E. UPLC/MS/MS assay for the simultaneous determination of seven antibiotics in human serum-Application to pediatric studies. J Pharm Biomed Anal. 2019;174:256-262.10.1016/j.jpba.2019.03.00431181488 Search in Google Scholar

95. Decosterd LA, Mercier T, Ternon B, Cruchon S, Guignard N, Lahrichi S, et al. Validation and clinical application of a multiplex high performance liquid chromatography - tandem mass spectrometry assay for the monitoring of plasma concentrations of 12 antibiotics in patients with severe bacterial infections. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1157:122160.10.1016/j.jchromb.2020.12216032891946 Search in Google Scholar

96. Pandey S, Dhanani J, Lipman J, Roberts JA, Wallis SC, Parker SL. Development and validation of LC-MS/MS methods to measure tobramycin and lincomycin in plasma, microdialysis fluid and urine: application to a pilot pharmacokinetic research study. Clin Chem Lab Med. 2020;58(2):274-284.10.1515/cclm-2019-078031714883 Search in Google Scholar

97. Putnam WC, Kallem RR, Edpuganti V, Subramaniyan I, Hall RG 2nd. Development and validation of a quantitative LC-MS/MS method for the simultaneous determination of ceftolozane and tazobactam in human plasma and urine. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1159:122354.10.1016/j.jchromb.2020.12235432905989 Search in Google Scholar

98. Myers CM, Blumer JL. Determination of imipenem and cilastatin in serum by high-pressure liquid chromatography. Antimicrob Agents Chemother. 1984;26(1):78-81.10.1128/AAC.26.1.78 Search in Google Scholar

99. Carlucci G, Biordi L, Vicentini C, Bologna M. Determination of imipenem in human plasma, urine and tissue by high-performance liquid chromatography. J Pharm Biomed Anal. 1990;8(3):283-6.10.1016/0731-7085(90)80038-Q Search in Google Scholar

100. al-Meshal MA, Ramadan MA, Lotfi KM, Shibl AM. Determination of meropenem in plasma by high-performance liquid chromatography and a microbiological method. J Clin Pharm Ther. 1995;20(3):159-63.10.1111/j.1365-2710.1995.tb00642.x Search in Google Scholar

101. Augey V, Grosse PY, Albert G, Audran M, Bressolle F. High-performance liquid chromatographic determination of tazobactam and piperacillin in human plasma and urine. J Chromatogr B Biomed Appl. 1996;682(1):125-36.10.1016/0378-4347(96)00049-7 Search in Google Scholar

102. Elkhaïli H, Niedergang S, Pompei D, Linger L, Leveque D, Jehl F. High-performance liquid chromatographic assay for meropenem in serum. J Chromatogr B Biomed Appl. 1996;686(1):19-26.10.1016/S0378-4347(96)00205-8 Search in Google Scholar

103. Garcia-Capdevila L, López-Calull C, Arroyo C, Moral MA, Mangues MA, Bonal J. Determination of imipenem in plasma by high-performance liquid chromatography for pharmacokinetic studies in patients. J Chromatogr B Biomed Sci Appl. 1997;692(1):127-32.10.1016/S0378-4347(96)00498-7 Search in Google Scholar

104. Bompadre S, Ferrante L, De Martinis M, Leone L. Determination of meropenem in serum by high-performance liquid chromatography with column switching. Journal of Chromatography A. 1998;812(1–2):249–253.10.1016/S0021-9673(98)00249-0 Search in Google Scholar

105. Farin D, Kitzes-Cohen R, Piva G, Gozlan I. High performance liquid chromatography method for the determination of meropenem in human plasma. Chromatographia. 1999;49:253–255.10.1007/BF02467552 Search in Google Scholar

106. Özkan Y, Küçükgüzel İ, Özkan SA, Aboul-Enein, HY. A rapid, sensitive high performance liquid chromatographic method for the determination of meropenem in pharmaceutical dosage form, human serum and urine. Biomedical Chromatography. 2001;15(4):263–266.10.1002/bmc.68 Search in Google Scholar

107. Robatel C, Buclin T, Eckert P, Schaller MD, Biollaz J, Decosterd LA. Determination of meropenem in plasma and filtrate-dialysate form patients under continuous veno-venous haemodiafiltration by SPE-LC. J Pharmaceut Biomed. 2002;29(1-2):17–33.10.1016/S0731-7085(02)00022-5 Search in Google Scholar

108. Gordien JB, Boselli E, Fleureau C, Allaouchiche B, Janvier G, Lalaude O, et al. Determination of free ertapenem in plasma and bronchoalveolar lavage by high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;830(2):218-23.10.1016/j.jchromb.2005.10.03716290251 Search in Google Scholar

109. Mundkowski RG, Majcher-Peszynska J, Burkhardt O, Welte T, Drewelow B. A new simple HPLC assay for the quantification of ertapenem in human plasma, lung tissue, and broncho-alveolar lavage fluid. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;832(2):231-5.10.1016/j.jchromb.2006.01.00516488198 Search in Google Scholar

110. Ikeda K, Ikawa K, Morikawa N, Miki M, Nishimura S, Kobayashi M. High-performance liquid chromatography with ultraviolet detection for real-time therapeutic drug monitoring of meropenem in plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;856(1-2):371-5.10.1016/j.jchromb.2007.05.04317581801 Search in Google Scholar

111. Sutherland C, Nicolau DP. Development of an HPLC method for the determination of doripenem in human and mouse serum. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;853(1-2):123-6.10.1016/j.jchromb.2007.03.00417392039 Search in Google Scholar

112. D’Avolio A, Baietto L, De Rosa FG, Garazzino S, Sciandra M, Siccardi M, et al. A simple and fast method for quantification of ertapenem using meropenem as internal standard in human plasma in a clinical setting. Ther Drug Monit. 2008;30(1):90-4.10.1097/FTD.0b013e31815f4f7e18223468 Search in Google Scholar

113. Bias M, Frey OR, Köberer A. HPLC-Methode zur quantitativen Bestimmung von Meropenem im Serum. Krankenhauspharmazie. 2010;31:482-485. Search in Google Scholar

114. Pickering M, Brown S. Quantification and validation of HPLC-UV and LC-MS assays for therapeutic drug monitoring of ertapenem in human plasma. Biomed Chromatogr. 2013;27(5):568-74.10.1002/bmc.282923065850 Search in Google Scholar

115. Chan CY, Chan K, French GL. Rapid high performance liquid chromatographic assay of cephalosporins in biological fluids. J Antimicrob Chemother. 1986;18(4):537-45.10.1093/jac/18.4.5373771435 Search in Google Scholar

116. Isla A, Arzuaga A, Maynar J, Gascón AR, Solinís MA, Corral E, et al. Determination of ceftazidime and cefepime in plasma and dialysate-ultrafiltrate from patients undergoing continuous veno-venous hemodiafiltration by HPLC. J Pharm Biomed Anal. 2005;39(5):996-1005.10.1016/j.jpba.2005.05.02716026959 Search in Google Scholar

117. Denooz R, Charlier C. Simultaneous determination of five beta-lactam antibiotics (cefepim, ceftazidim, cefuroxim, meropenem and piperacillin) in human plasma by high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;864(1-2):161-7.10.1016/j.jchromb.2008.01.03718295557 Search in Google Scholar

118. Legrand T, Chhun S, Rey E, Blanchet B, Zahar JR, Lanternier F, et al. Simultaneous determination of three carbapenem antibiotics in plasma by HPLC with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;875(2):551-6.10.1016/j.jchromb.2008.09.02018848512 Search in Google Scholar

119. Nemutlu E, Kir S, Katlan D, Beksaç MS. Simultaneous multiresponse optimization of an HPLC method to separate seven cephalosporins in plasma and amniotic fluid: application to validation and quantification of cefepime, cefixime and cefoperazone. Talanta. 2009;80(1):117-26.10.1016/j.talanta.2009.06.03419782200 Search in Google Scholar

120. Verdier MC, Tribut O, Tattevin P, Le Tulzo Y, Michelet C, Bentué-Ferrer D. Simultaneous determination of 12 beta-lactam antibiotics in human plasma by high-performance liquid chromatography with UV detection: application to therapeutic drug monitoring. Antimicrob Agents Chemother. 2011;55(10):4873-9.10.1128/AAC.00533-11318701321788467 Search in Google Scholar

121. Dailly E, Bouquié R, Deslandes G, Jolliet P, Le Floch R. A liquid chromatography assay for a quantification of doripenem, ertapenem, imipenem, meropenem concentrations in human plasma: application to a clinical pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879(15-16):1137-42.10.1016/j.jchromb.2011.03.03821474395 Search in Google Scholar

122. Briscoe SE, McWhinney BC, Lipman J, Roberts JA, Ungerer JP. A method for determining the free (unbound) concentration of ten beta-lactam antibiotics in human plasma using high performance liquid chromatography with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;907:178-84.10.1016/j.jchromb.2012.09.01623026224 Search in Google Scholar

123. Veillette JJ, Winans SA, Forland SC, Maskiewicz VK. A simple and rapid RP-HPLC method for the simultaneous determination of piperacillin and tazobactam in human plasma. J Pharm Biomed Anal. 2016;131:80-86.10.1016/j.jpba.2016.08.01027529601 Search in Google Scholar

124. Wicha SG, Kloft C. Simultaneous determination and stability studies of linezolid, meropenem and vancomycin in bacterial growth medium by high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1028:242-248.10.1016/j.jchromb.2016.06.03327414982 Search in Google Scholar

125. Pinder N, Brenner T, Swoboda S, Weigand MA, Hoppe- Tichy T. Therapeutic drug monitoring of beta-lactam antibiotics - Influence of sample stability on the analysis of piperacillin, meropenem, ceftazidime and flucloxacillin by HPLC-UV. J Pharm Biomed Anal. 2017;143:86-93.10.1016/j.jpba.2017.05.03728578254 Search in Google Scholar

126. Sutherland CA, Nicolau DP. Development of an HPLC Method for the Determination of Meropenem/Vaborbactam in Biological and Aqueous Matrixes. J Chromatogr Sci. 2020;58(8):726-730.10.1093/chromsci/bmaa04132685976 Search in Google Scholar

127. Milla P, Ferrari F, Muntoni E, Sartori M, Ronco C, Arpicco S. Validation of a simple and economic HPLC-UV method for the simultaneous determination of vancomycin, meropenem, piperacillin and tazobactam in plasma samples. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1148:122151.10.1016/j.jchromb.2020.12215132417718 Search in Google Scholar

128. Casals G, Hernández C, Hidalgo S, Morales B, López- Púa Y, Castro P, et al. Development and validation of a UHPLC diode array detector method for meropenem quantification in human plasma. Clin Biochem. 2014;47(16-17):223-7.10.1016/j.clinbiochem.2014.08.00225128839 Search in Google Scholar

129. Legrand T, Vodovar D, Tournier N, Khoudour N, Hulin A. Simultaneous Determination of Eight β-Lactam Antibiotics, Amoxicillin, Cefazolin, Cefepime, Cefotaxime, Ceftazidime, Cloxacillin, Oxacillin, and Piperacillin, in Human Plasma by Using Ultra-High-Performance Liquid Chromatography with Ultraviolet Detection. Antimicrob Agents Chemother. 2016;60(8):4734-42.10.1128/AAC.00176-16495819627216076 Search in Google Scholar

130. Ferrone V, Cotellese R, Di Marco L, Bacchi S, Carlucci M, Cichella A, et al. Meropenem, levofloxacin and linezolid in human plasma of critical care patients: A fast semi-automated micro-extraction by packed sorbent UHPLC-PDA method for their simultaneous determination. J Pharm Biomed Anal. 2017;140:266-273.10.1016/j.jpba.2017.03.03528371721 Search in Google Scholar

131. Ferrone V, Cotellese R, Carlucci M, Di Marco L, Carlucci G. Air assisted dispersive liquid-liquid microextraction with solidification of the floating organic droplets (AA-DLLME-SFO) and UHPLC-PDA method: Application to antibiotics analysis in human plasma of hospital acquired pneumonia patients. J Pharm Biomed Anal. 2018;151:266-273.10.1016/j.jpba.2017.12.03929413974 Search in Google Scholar

132. Ferrone V, Cotellese R, Cichella A, Raimondi P, Carlucci M, Palumbo P, et al. Meropenem and ciprofloxacin in complicated gastric surgery for cancer patients: A simple SPE-UHPLC-PDA method for their determination in human plasma. Biomed Chromatogr. 2019;33(3):e4450.10.1002/bmc.445030513138 Search in Google Scholar

133. Fage D, Deprez G, Fontaine B, Wolff F, Cotton F. Simultaneous determination of 8 beta-lactams and linezolid by an ultra-performance liquid chromatography method with UV detection and cross-validation with a commercial immunoassay for the quantification of linezolid. Talanta. 2021;221:121641.10.1016/j.talanta.2020.12164133076161 Search in Google Scholar

134. Sime FB, Roberts MS, Roberts JA, Robertson TA. Simultaneous determination of seven β-lactam antibiotics in human plasma for therapeutic drug monitoring and pharmacokinetic studies. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;960:134-44.10.1016/j.jchromb.2014.04.02924814000 Search in Google Scholar

135. Parker SL, Pandey S, Sime FB, Lipman J, Roberts JA, Wallis SC. A validated LC-MSMS method for the simultaneous quantification of meropenem and vaborbactam in human plasma and renal replacement therapy effluent and its application to a pharmacokinetic study. Anal Bioanal Chem. 2019;411(29):7831-7840.10.1007/s00216-019-02184-431732787 Search in Google Scholar

136. Parker SL, Pandey S, Sime FB, Stuart J, Lipman J, Roberts JA, et al. A validated LC-MS/MS method for the simultaneous quantification of the novel combination antibiotic, ceftolozane-tazobactam, in plasma (total and unbound), CSF, urine and renal replacement therapy effluent: application to pilot pharmacokinetic studies. Clin Chem Lab Med. 2020;59(5):921-933.10.1515/cclm-2020-119633554515 Search in Google Scholar

137. Colin P, De Bock L, T’jollyn H, Boussery K, Van Bocxlaer J. Development and validation of a fast and uniform approach to quantify β-lactam antibiotics in human plasma by solid phase extraction-liquid chromatography- electrospray-tandem mass spectrometry. Talanta. 2013;103:285-93.10.1016/j.talanta.2012.10.04623200389 Search in Google Scholar

138. Abdulla A, Bahmany S, Wijma RA, van der Nagel BCH, Koch BCP. Simultaneous determination of nine β-lactam antibiotics in human plasma by an ultrafast hydrophilic- interaction chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1060:138-143.10.1016/j.jchromb.2017.06.01428618388 Search in Google Scholar

139. Rigo-Bonnin R, Ribera A, Arbiol-Roca A, Cobo-Sacristán S, Padullés A, Murillo Ò, et al. Development and validation of a measurement procedure based on ultrahigh performance liquid chromatography-tandem mass spectrometry for simultaneous measurement of β-lactam antibiotic concentration in human plasma. Clin Chim Acta. 2017;468:215-224.10.1016/j.cca.2017.03.009 Search in Google Scholar

140. Naicker S, Guerra Valero YC, Ordenez Meija JL, Lipman J, Roberts JA, Wallis SC, et al. A UHPLC-MS/MS method for the simultaneous determination of piperacillin and tazobactam in plasma (total and unbound), urine and renal replacement therapy effluent. J Pharm Biomed Anal. 2018;148:324-333.10.1016/j.jpba.2017.10.023 Search in Google Scholar

141. Wise R, Logan M, Cooper M, Ashby JP, Andrews JM. Meropenem pharmacokinetics and penetration into an inflammatory exudate. Antimicrob Agents Chemother. 1990;34(8):1515-1517.10.1128/AAC.34.8.1515 Search in Google Scholar

142. Leroy A, Fillastre JP, Borsa-Lebas F, Etienne I, Humbert G. Pharmacokinetics of meropenem (ICI 194,660) and its metabolite (ICI 213,689) in healthy subjects and in patients with renal impairment. Antimicrob Agents Chemother. 1992;36(12):2794e2798.10.1128/AAC.36.12.2794 Search in Google Scholar

143. Chimata M, Nagase M, Suzuki Y, Shimomura M, Kakuta S. Pharmacokinetics of meropenem in patients with various degrees of renal function, including patients with end-stage renal disease. Antimicrob Agents Chemother. 1993;37(2):229-33.10.1128/AAC.37.2.229 Search in Google Scholar

144. Bergogne-Berezin E, Muller-Serieys C, Aubier M, Dombret MC. Concentrations of meropenem in serum and in bronchial secretions in patients undergoing fiberoptic bronchoscopy. European Journal of Clinical Pharmacology. 1994;46(1):87-8.10.1007/BF00195922 Search in Google Scholar

145. Byl B, Jacobs F, Roucloux I, de Franquen P, Cappello M, Thys JP. Penetration of meropenem in lung, bronchial mucosa, and pleural tissues. Antimicrob Agents Chemother. 1999;43(3):681-2.10.1128/AAC.43.3.681 Search in Google Scholar

146. Mrestani Y, Neubert R, Nagel F. Capillary zone electrophoresis determination of meropenem in biological media using a high sensitivity cell. J Pharm Biomed Anal. 1999;20(6):899-903.10.1016/S0731-7085(99)00100-4 Search in Google Scholar

147. Gáspár A, Karlos S, Andrási M, Klekner A. Capillary electrophoresis for the direct determination of cephalosporins in clinical samples. Chromatographia. 2002;56: S109-S114.10.1007/BF02494122 Search in Google Scholar

148. Kitahashi T, Furuta I. Determination of meropenem by capillary electrophoresis using direct injection of serum. J. Chromatogr Sci. 2005;43(8):430-433.10.1093/chromsci/43.8.43016212785 Search in Google Scholar

149. Andrási M, Gáspár A, Klekner A. Analysis of cephalosporins in bronchial secretions by capillary electrophoresis after simple pretreatment. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;846(1-2):355-8.10.1016/j.jchromb.2006.08.025 Search in Google Scholar

150. Al-Attas A, Nasr JJ, El-Enany N, Belal F. A green capillary zone electrophoresis method for the simultaneous determination of piperacillin, tazobactam and cefepime in pharmaceutical formulations and human plasma. Biomed Chromatogr. 2015;29(12):1811-8.10.1002/bmc.3500 Search in Google Scholar

151. Carlucci G, Mazzeo P, Bologna M. Imipenem in biological fluids analysed by derivative UV-spectrometry. J Pharmaceut Biomed. 1991; 9(10-12):1169–1172.10.1016/0731-7085(91)80062-E Search in Google Scholar

152. Jhankal KK, Sharma DK. Electrochemical studies of meropenem at glassy carbon electrode and its direct determination in human plasma by square wave anodic adsorptive stripping voltammetry. Chem Sci Trans. 2016;5(4):1008–1018. Search in Google Scholar

153. Merola G, Martini E, Tomassetti M, Campanella L. Simple and suitable immunosensor for β-lactam antibiotics analysis in real matrixes: milk, serum, urine. J Pharm Biomed Anal. 2015;106:186-96.10.1016/j.jpba.2014.08.00525178531 Search in Google Scholar

154. Farrell CD, Rowell FJ, Cumming RH. A rapid florescence ELISA for ceftazidime. Anal Proc. 1995;32:205–206.10.1039/ai9953200205 Search in Google Scholar

155. Cullmann W, Dick W, Edelmann M. An enzymatic assay for monitoring serum, cerebrospinal fluid, and urine concentration of beta-lactam antibiotics. J Clin Chem Clin Biochem. 1985;23(3):151-6. Search in Google Scholar

156. Bax RP, Bastain W, Featherstone A, Wilkinson DM, Hutchison M, Haworth SJ. The pharmacokinetics of meropenem in volunteers. J Antimicrob Chemother. 1989;24 Suppl A:311-20.10.1093/jac/24.suppl_A.3112808215 Search in Google Scholar

157. Burman LA, Nilsson-Ehle I, Hutchison M, Haworth SJ, Norrby SR. Pharmacokinetics of meropenem and its metabolite ICI 213,689 in healthy subjects with known renal metabolism of imipenem. J Antimicrob Chemother. 1991;27(2):219-24.10.1093/jac/27.2.2192055812 Search in Google Scholar

158. Nilsson-Ehle I, Hutchison M, Haworth SJ, Norrby SR. Pharmacokinetics of meropenem compared to imipenem-cilastatin in young, healthy males. Eur J Clin Microbiol Infect Dis. 1991;10(2):85-8.10.1007/BF019644131864280 Search in Google Scholar

159. Granai F, Smart HL, Triger DR. A study of the penetration of meropenem into bile using endoscopic retrograde cholangiography. J Antimicrob Chemother. 1992;29(6):711-8.10.1093/jac/29.6.7111506351 Search in Google Scholar

160. Harrison MP, Haworth SJ, Moss SR, Wilkinson DM, Featherstone A. The disposition and metabolic fate of 14C-meropenem in man. Xenobiotica. 1993;23(11):1311-23.10.3109/004982593090594418310714 Search in Google Scholar

161. Bedikian A, Okamoto MP, Nakahiro RK, Farino J, Heseltine PN, Appleman MD, ET AL. Pharmacokinetics of meropenem in patients with intra-abdominal infections. Antimicrob Agents Chemother. 1994;38(1):151-4.10.1128/AAC.38.1.151 Search in Google Scholar

162. Lovering AM, Vickery CJ, Watkin DS, Leaper D, McMullin CM, White LO, ET AL. The pharmacokinetics of meropenem in surgical patients with moderate or severe infections. J Antimicrob Chemother. 1995;36(1):165-72.10.1093/jac/36.1.165 Search in Google Scholar

163. Kelly HC, Hutchison M, Haworth SJ. A comparison of the pharmacokinetics of meropenem after administration by intravenous injection over 5 min and intravenous infusion over 30 min. J Antimicrob Chemother. 1995;36 Suppl A:35-41.10.1093/jac/36.suppl_A.35 Search in Google Scholar

164. Hutchison M, Faulkner KL, Turner PJ, Haworth SJ, Sheikh W, Nadler H, Pitkin DH. A compilation of meropenem tissue distribution data. J Antimicrob Chemother. 1995;36 Suppl A:43-56.10.1093/jac/36.suppl_A.43 Search in Google Scholar

165. Lee HS, Shim HO, Yu SR. High-performance liquid chromatographic determination of meropenem in rat plasma using column-switching. Chromatographia. 1996;42(7):405–408.10.1007/BF02272131 Search in Google Scholar

166. Dupuis A, Minet P, Couet W, Courtois P, Bouquet S. Rapid and sensitive determination of meropenem in rat plasma by high performance liquid chromatography. Journal of Liquid Chromatography & Related Technologies. 1998;21(16):2549–2560.10.1080/10826079808003598 Search in Google Scholar

167. Ip M, Au C, Cheung SW, Chan CY, Cheng AF. A rapid high-performance liquid chromatographic assay for cefepime, cefpirome and meropenem. J Antimicrob Chemother. 1998;42(1):121-3.10.1093/jac/42.1.121 Search in Google Scholar

168. Allegranzi B, Cazzadori A, Di Perri G, Bonora S, Berti M, Franchino L, et al. Concentrations of single-dose meropenem (1 g iv) in bronchoalveolar lavage and epithelial lining fluid. Journal of Antimicrobial Chemotherapy. 2000;46(2):319-22.10.1093/jac/46.2.319 Search in Google Scholar

169. Ehrlich M, Daschner FD, Kümmerer K. Rapid antibiotic drug monitoring: meropenem and ceftazidime determination in serum and bronchial secretions by high-performance liquid chromatography-integrated sample preparation. J Chromatogr B Biomed Sci Appl. 2001;751(2):357-63.10.1016/S0378-4347(00)00504-1 Search in Google Scholar

170. Robatel C, Decosterd LA, Biollaz J, Eckert P, Schaller MD, Buclin T. Pharmacokinetics and dosage adaptation of meropenem during continuous venovenous hemodiafiltration in critically ill patients. J Clin Pharmacol. 2003;43(12):1329-40.10.1177/009127000326028614615469 Search in Google Scholar

171. Legrand T, Chhun S, Rey E, Blanchet B, Zahar JR, Lanternier F, et al. Simultaneous determination of three carbapenem antibiotics in plasma by HPLC with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;875(2):551-6.10.1016/j.jchromb.2008.09.02018848512 Search in Google Scholar

172. Delattre IK, Musuamba FT, Verbeeck RK, Dugernier T, Spapen H, Laterre PF, et al. Empirical models for dosage optimization of four beta-lactams in critically ill septic patients based on therapeutic drug monitoring of amikacin. Clin Biochem. 2010;43(6):589-98.10.1016/j.clinbiochem.2009.12.00720036226 Search in Google Scholar

173. Kameda K, Ikawa K, Ikeda K, Morikawa N, Nakashima A, Ohge H, et al. HPLC method for measuring meropenem and biapenem concentrations in human peritoneal fluid and bile: application to comparative pharmacokinetic investigations. Journal of Chromatographic Science. 2010;48(5):406–411.10.1093/chromsci/48.5.40620515537 Search in Google Scholar

174. Cherkashina K, Lebedinets S, Pochivalov A, Lezov A, Vakh C, Bulatov A. Homogeneous liquid-liquid microextraction based on primary amine phase separation: A novel approach for sample pretreatment. Anal Chim Acta. 2019;1074:117-122.10.1016/j.aca.2019.04.07031159931 Search in Google Scholar

175. Simon P, Petroff D, Busse D, Heyne J, Girrbach F, Dietrich A, et al. Meropenem Plasma and Interstitial Soft Tissue Concentrations in Obese and Nonobese Patients- A Controlled Clinical Trial. Antibiotics (Basel). 2020;9(12):931.10.3390/antibiotics9120931776738533371322 Search in Google Scholar

176. Nau R, Lassek C, Kinzig-Schippers M, Thiel A, Prange HW, Sörgel F. Disposition and elimination of meropenem in cerebrospinal fluid of hydrocephalic patients with external ventriculostomy. Antimicrob Agents Chemother. 1998;42(8):2012-6.10.1128/AAC.42.8.20121057259687399 Search in Google Scholar

177. Conte JE Jr, Golden JA, Kelley MG, Zurlinden E. Intrapulmonary pharmacokinetics and pharmacodynamics of meropenem. Int J Antimicrob Agents. 2005;26(6):449-56.10.1016/j.ijantimicag.2005.08.01516280244 Search in Google Scholar

178. Krueger WA, Bulitta J, Kinzig-Schippers M, Landersdorfer C, Holzgrabe U, Naber KG, et al. Evaluation by monte carlo simulation of the pharmacokinetics of two doses of meropenem administered intermittently or as a continuous infusion in healthy volunteers. Antimicrob Agents Chemother. 2005;49(5):1881-9.10.1128/AAC.49.5.1881-1889.2005108763815855510 Search in Google Scholar

179. Ahsman MJ, Wildschut ED, Tibboel D, Mathot RA. Microanalysis of beta-lactam antibiotics and vancomycin in plasma for pharmacokinetic studies in neonates. Antimicrob Agents Chemother. 2009;53(1):75-80.10.1128/AAC.00636-08261215818955527 Search in Google Scholar

180. Cohen-Wolkowiez M, White NR, Bridges A, Benjamin DK Jr, Kashuba AD. Development of a liquid chromatography- tandem mass spectrometry assay of six antimicrobials in plasma for pharmacokinetic studies in premature infants. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879(30):3497-506.10.1016/j.jchromb.2011.09.031321040521983195 Search in Google Scholar

181. Carlier M, Stove V, Roberts JA, Van de Velde E, De Waele JJ, Verstraete AG. Quantification of seven β-lactam antibiotics and two β-lactamase inhibitors in human plasma using a validated UPLC-MS/MS method. Int J Antimicrob Agents. 2012;40(5):416-22.10.1016/j.ijantimicag.2012.06.02222884857 Search in Google Scholar

182. Rigo-Bonnin R, Juvany-Roig R, Leiva-Badosa E, Sabater- Riera J, Pérez-Fernández XL, Cárdenas-Campos P, et al. Measurement of meropenem concentration in different human biological fluids by ultra-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2014;406(20):4997-5007.10.1007/s00216-014-7910-924879538 Search in Google Scholar

183. Ferrari D, Ripa M, Premaschi S, Banfi G, Castagna A, Locatelli M. LC-MS/MS method for simultaneous determination of linezolid, meropenem, piperacillin and teicoplanin in human plasma samples. J Pharm Biomed Anal. 2019;169:11-18.10.1016/j.jpba.2019.02.03730826487 Search in Google Scholar

184. Rehm S, Rentsch KM. HILIC LC-MS/MS method for the quantification of cefepime, imipenem and meropenem. J Pharm Biomed Anal. 2020;186:113289.10.1016/j.jpba.2020.11328932428767 Search in Google Scholar

185. Krnáč D, Reiffová K, Rolinski B. A new HPLC-MS/MS analytical method for quantification of tazobactam, piperacillin, and meropenem in human plasma. J Sep Sci. 2021;44(14):2744-2753.10.1002/jssc.20210006733988308 Search in Google Scholar

186. Chou YW, Yang YH, Chen JH, Kuo CC, Chen SH. Quantification of meropenem in plasma and cerebrospinal fluid by micellar electrokinetic capillary chromatography and application in bacterial meningitis patients. Journal of chromatography. B, Analytical Technologies in the Biomedical and Life Sciences. 2007;856(1-2):294-301.10.1016/j.jchromb.2007.06.01517625990 Search in Google Scholar

187. Christensson BA, Nilsson-Ehle I, Hutchison M, Haworth SJ, Oqvist B, Norrby SR. Pharmacokinetics of meropenem in subjects with various degrees of renal impairment. Antimicrob Agents Chemother. 1992;36(7):1532-1537.10.1128/AAC.36.7.15321916161510451 Search in Google Scholar

188. Martens-Lobenhoffer J, Bode-Böger SM. Quantification of meropenem in human plasma by HILIC - tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1046:13-17.10.1016/j.jchromb.2017.01.01628126443 Search in Google Scholar

189. Food and Drug Administration. Guidance for industry on bioanalytical method validation. Rockville, MD: U.S. Department of Health and Human Services 2001. Available at: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf. [cited Nov 6 2021]. Search in Google Scholar

190. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016;6(2):71-79.10.1016/j.jpha.2015.11.005576244829403965 Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, other