À propos de cet article

Citez

1. Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques. J Bone Joint Surg Am. 2011;93(23):2227-36.10.2106/JBJS.J.01513 Search in Google Scholar

2. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005;36 Suppl 3:S20-7.10.1016/j.injury.2005.07.029 Search in Google Scholar

3. Kubasiewicz-Ross P, Hadzik J, Seeliger J, Kozak K, Jurczyszyn K, Gerber H, et al. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats. Ann Anat. 2017;213:83-90.10.1016/j.aanat.2017.05.010 Search in Google Scholar

4. Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Frontiers in Bioengineering and Biotechnology. 2020;8:922.10.3389/fbioe.2020.00922 Search in Google Scholar

5. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25(10):2445-61.10.1007/s10856-014-5240-2 Search in Google Scholar

6. Prabakaran K, Rajeswari S. Spectroscopic investigations on the synthesis of nano-hydroxyapatite from calcined eggshell by hydrothermal method using cationic surfactant as template. Spectrochimica acta Part A, Molecular and biomolecular spectroscopy. 2009;74(5):1127-34.10.1016/j.saa.2009.09.021 Search in Google Scholar

7. Gergely G, Wéber F, Lukács I, Tóth AL, Horváth ZE, Mihály J, et al. Preparation and characterization of hydroxyapatite from eggshell. Ceramics International. 2010;36(2):803-6.10.1016/j.ceramint.2009.09.020 Search in Google Scholar

8. Gauthier O, Bouler JM, Weiss P, Bosco J, Aguado E, Daculsi G. Short-term effects of mineral particle sizes on cellular degradation activity after implantation of injectable calcium phosphate biomaterials and the consequences for bone substitution. Bone. 1999;25(2 Suppl):71s-4s.10.1016/S8756-3282(99)00137-4 Search in Google Scholar

9. Daulbayev C, Mansurov Z, Mitchell G, Zakhidov A. Obtaining of Biologically Soluble Membranes Based on Polymeric Nanofibres and Hydroxyapatite of Calcium. Eurasian Chemico-Technological Journal. 2018;20:119.10.18321/ectj690 Search in Google Scholar

10. Murugan R, Ramakrishna S. Aqueous mediated synthesis of bioresorbable nanocrystalline hydroxyapatite. Journal of Crystal Growth. 2005;274(1-2):209-13.10.1016/j.jcrysgro.2004.09.069 Search in Google Scholar

11. Lee S-W, Kim S-G, Balázsi C, Chae W-S, Lee H-O. Comparative study of hydroxyapatite from eggshells and synthetic hydroxyapatite for bone regeneration. Oral surgery, oral medicine, oral pathology and oral radiology. 2012;113(3):348-55.10.1016/j.tripleo.2011.03.03322676827 Search in Google Scholar

12. Messora M, Nagata M, Furlaneto F, Dornelles R, Bomfim S, Deliberador T, et al. A standardized research protocol for platelet-rich plasma (PRP) preparation in rats. RSBO. 2011;8:299-304. Search in Google Scholar

13. Zerbinatti CC, Veiga DF, Oliveira MAB, Mundim FGL, Pereira RM, Azevedo F, et al. Bioceramic cement in the filling of bone defects in rats. Acta Cir Bras. 2019;34(6):e201900601.10.1590/s0102-865020190060000001670533331432992 Search in Google Scholar

14. Cassaro CV, Justulin LA, Jr., de Lima PR, Golim MA, Biscola NP, de Castro MV, et al. Fibrin biopolymer as scaffold candidate to treat bone defects in rats. J Venom Anim Toxins Incl Trop Dis. 2019;25:e20190027.10.1590/1678-9199-jvatitd-2019-0027683040731723344 Search in Google Scholar

15. Yuan X, Han L, Lin H, Guo Z, Huang Y, Li S, et al. The role of antimiR-26a-5p/biphasic calcium phosphate in repairing rat femoral defects. International journal of molecular medicine. 2019;44(3):857-70.10.3892/ijmm.2019.4249665800531257525 Search in Google Scholar

16. Oryan A, Moshiri A, Raayat AR. Novel application of Theranekron® enhanced the structural and functional performance of the tenotomized tendon in rabbits. Cells Tissues Organs. 2012;196(5):442-55.10.1159/00033786022722667 Search in Google Scholar

17. Meimandi-Parizi A, Oryan A, Moshiri A. Tendon tissue engineering and its role on healing of the experimentally induced large tendon defect model in rabbits: a comprehensive in vivo study. PLoS One. 2013;8(9):e73016.10.1371/journal.pone.0073016376410424039851 Search in Google Scholar

18. Batista M, Leivas T, Rodrigues C, Arenas G, Belitardo D, Guarniero R. Comparison between the effects of platelet-rich plasma and bone marrow concentrate on defect consolidation in the rabbit tibia. Clinics (São Paulo, Brazil). 2011;66:1787-92. Search in Google Scholar

19. Liu WC, Robu IS, Patel R, Leu MC, Velez M, Chu TM. The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones. Biomed Mater. 2014;9(4):045013.10.1088/1748-6041/9/4/04501325065552 Search in Google Scholar

20. Kuroiwa Y, Fukui T, Takahara S, Lee SY, Oe K, Arakura M, et al. Topical cutaneous application of CO2 accelerates bone healing in a rat femoral defect model. BMC Musculoskeletal Disorders. 2019;20(1):237.10.1186/s12891-019-2601-5653002831113412 Search in Google Scholar

21. Kunert-Keil C, Scholz F, Gedrange T, Gredes T. Comparative study of biphasic calcium phosphate with betatricalcium phosphate in rat cranial defects--A molecularbiological and histological study. Ann Anat. 2015;199:79-84.10.1016/j.aanat.2013.12.00124439994 Search in Google Scholar

22. Corsetti A, Bahuschewskyj C, Ponzoni D, Langie R, Dos Santos LA, Camassola M, et al. Repair of bone defects using adipose-derived stem cells combined with alphatricalcium phosphate and gelatin sponge scaffolds in a rat model. Journal of Applied Oral Science. 2017;25: 10-9.10.1590/1678-77572016-0094528939528198971 Search in Google Scholar

23. Oryan A, Alidadi S, Bigham-Sadegh A, Moshiri A. Effectiveness of tissue engineered based platelet gel embedded chitosan scaffold on experimentally induced critical sized segmental bone defect model in rat. Injury. 2017;48(7):1466-74.10.1016/j.injury.2017.04.04428460883 Search in Google Scholar

24. Oryan A, Alidadi S, Bigham-Sadegh A. Dicalcium Phosphate Anhydrous: An Appropriate Bioceramic in Regeneration of Critical-Sized Radial Bone Defects in Rats. Calcif Tissue Int. 2017;101(5):530-44.10.1007/s00223-017-0309-928761974 Search in Google Scholar

25. Greenbaum MA, Kanat IO. Current concepts in bone healing. Review of the literature. J Am Podiatr Med Assoc. 1993;83(3):123-9. Search in Google Scholar

26. Holstein JH, Garcia P, Histing T, Kristen A, Scheuer C, Menger MD, et al. Advances in the establishment of defined mouse models for the study of fracture healing and bone regeneration. J Orthop Trauma. 2009;23(5 Suppl):S31-8.10.1097/BOT.0b013e31819f27e519390374 Search in Google Scholar

27. Kattimani VS, Chakravarthi PS, Kanumuru NR, Subbarao VV, Sidharthan A, Kumar TSS, et al. Eggshell derived hydroxyapatite as bone graft substitute in the healing of maxillary cystic bone defects: a preliminary report. Journal of international oral health : JIOH. 2014;6(3):15-9. Search in Google Scholar

28. Kattimani V, Lingamaneni KP, Chakravarthi PS, Kumar TS, Siddharthan A. Eggshell-Derived Hydroxyapatite: A New Era in Bone Regeneration. J Craniofac Surg. 2016;27(1):112-7.10.1097/SCS.000000000000228826674907 Search in Google Scholar

29. Leventouri T. Synthetic and biological hydroxyapatites: crystal structure questions. Biomaterials. 2006;27(18):3339-42.10.1016/j.biomaterials.2006.02.02116519933 Search in Google Scholar

30. Pinchuk N, Parkhomey O, Sych O. In Vitro Investigation of Bioactive Glass-Ceramic Composites Based on Biogenic Hydroxyapatite or Synthetic Calcium Phosphates. Nanoscale Res Lett. 2017;12(1):111.10.1186/s11671-017-1895-1530740928209033 Search in Google Scholar

31. Skwarcz S, Bryzek I, Gregosiewicz A, Warda E, Gawęda K, Tarczyńska M, et al. The effect of activated platelet-rich plasma (PRP) on tricalcium hydroxyapatite phosphate healing in experimental, partial defects of long bone shafts in animal models. Pol J Vet Sci. 2019;22(2):243-50. Search in Google Scholar

32. El-Sharkawy H, Kantarci A, Deady J, Hasturk H, Liu H, Alshahat M, et al. Platelet-rich plasma: growth factors and pro- and anti-inflammatory properties. J Periodontol. 2007;78(4):661-9.10.1902/jop.2007.06030217397313 Search in Google Scholar

33. Anitua E, Prado R, Padilla S, Orive G. Platelet-rich plasma therapy: another appealing technology for regenerative medicine? Regenerative Medicine. 2016;11(4):355-7.10.2217/rme-2015-005827188214 Search in Google Scholar

34. Kanthan SR, Kavitha G, Addi S, Choon DS, Kamarul T. Platelet-rich plasma (PRP) enhances bone healing in non-united critical-sized defects: a preliminary study involving rabbit models. Injury. 2011;42(8):782-9.10.1016/j.injury.2011.01.01521329922 Search in Google Scholar

35. Malhotra A, Pelletier MH, Yu Y, Walsh WR. Can platelet- rich plasma (PRP) improve bone healing? A comparison between the theory and experimental outcomes. Arch Orthop Trauma Surg. 2013;133(2):153-65.10.1007/s00402-012-1641-123197184 Search in Google Scholar

36. Oryan A, Meimandi Parizi A, Shafiei-Sarvestani Z, Bigham AS. Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: radiological, macroscopical, hidtopathological and biomechanical evaluation. Cell Tissue Bank. 2012;13(4):639-51.10.1007/s10561-011-9285-x Search in Google Scholar

37. Guzel Y, Karalezli N, Bilge O, Kacira BK, Esen H, Karadag H, et al. The biomechanical and histological effects of platelet-rich plasma on fracture healing. Knee Surg Sports Traumatol Arthrosc. 2015;23(5):1378-83.10.1007/s00167-013-2734-2 Search in Google Scholar

38. Xu A, Zhou C, Qi W, He F. Comparison Study of Three Hydroxyapatite-Based Bone Substitutes in a Calvarial Defect Model in Rabbits. Int J Oral Maxillofac Implants. 2019;34(2):434–42.10.11607/jomi.7174 Search in Google Scholar

39. Oryan A, Alidadi S, Moshiri A. Platelet-rich plasma for bone healing and regeneration. Expert Opin Biol Ther. 2016;16(2):213-32.10.1517/14712598.2016.1118458 Search in Google Scholar

40. Cornell CN. Osteoconductive materials and their role as substitutes for autogenous bone grafts. Orthop Clin North Am. 1999;30(4):591-8.10.1016/S0030-5898(05)70112-7 Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, other