À propos de cet article

Citez

Angiolillo DJ, Weisman SM. Clinical pharmacology and cardiovascular safety of naproxen. Am J Cardiovasc Drugs. 2017;17(2):97-107. Search in Google Scholar

Moore N, Scheiman JM. Gastrointestinal safety and tolerability of oral non-aspirin over-the-counter analgesics. Postgrad Med J. 2018;130(2):188-99. Search in Google Scholar

Katritzky AR, Jishkariani D, Narindoshvili T. Convenient synthesis of ibuprofen and naproxen aminoacyl, dipeptidoyl and ester derivatives. Chem Biol Drug Des. 2009;73(6):618–26. Search in Google Scholar

Piffar P, Fernandez R, Tchaikovski O Jr, Hirabara SM, Folador A, Pinto GJ, et al. Naproxen, clenbuterol and insulin administration ameliorates cancer cachexia and reduce tumor growth in Walker 256 tumor-bearing rats. Cancer Lett. 2003;201(2):139–48. Search in Google Scholar

Chen PC, Patil V, Guerrant W, Green P, Oyelere AK. Synthesis and structure–activity relationship of histone deacetylase (HDAC) inhibitors with triazole-linked cap group. Bioorg Med Chem. 2008;16(9): 4839–53. Search in Google Scholar

Khalifa MM, Ismail MM, Eissa S, Ammar Y. Design and synthesis, of some novel 6-methoxynaphthalene derivatives with potential anticancer activity. Der Pharma Chem. 2012;4(4):1552–66. Search in Google Scholar

Kumar V, Chimni SS. Recent developments on thiourea based anticancer chemotherapeutics. Anti-Cancer Agents Med Chem. 2015;15(2):163-75. Search in Google Scholar

Prajapati NP, Patel HD. Novel thiosemicarbazone derivatives and their metal complexes: Recent development. Synth Commun. 2019;49(21):2767-804. Search in Google Scholar

Lourenco AL, Saito MS, Dorneles LE, Viana GM, Sathler PC, Aguiar LC, et al. Synthesis and antiplatelet activity of antithrombotic thiourea compounds: biological and structure-activity relationship studies. Molecules. 2015;20(4):7174-200. Search in Google Scholar

Liu W, Zhou J, Zhang T, Zhu H, Qian H, Zhang H, et al. Design and synthesis of thiourea derivatives containing a benzo[5,6]cyclohepta[1,2-b]pyridine moiety as potential antitumor and anti-inflammatory agents. Bioorg Med Chem Lett. 2012;22:2701-4. Search in Google Scholar

Shakeel A. Thiourea Derivatives in Drug Design and Medicinal Chemistry: A Short Review. J Drug Des Med Chem. 2016;2:10. Search in Google Scholar

Hu H, Lin C, Ao M, Ji Y, Tang B, Zhou X, et al. Synthesis and biological evaluation of 1-(2-(adamantane-1-yl)-1H-indol-5-yl)-3-substituted urea/thiourea derivatives as anticancer agents. RSC Adv. 2017;7:51640-51. Search in Google Scholar

Pingaew R, Sinthupoom N, Mandi P, Prachayasittikul V, Cherdtrakulkiat R, Prachayasittikul S, et al. Synthesis, biological evaluation and in silico study of bis-thiourea derivatives as anticancer, antimalarial and antimicrobial agents. Med Chem Res. 2017;26:3136-48. Search in Google Scholar

Zhang H, Zhang Y, Wu G, Zhou J, Huang W, Hu X. Synthesis and biological evaluation of sulfonylurea and thiourea derivatives substituted with benzenesulfonamide groups as potential hypoglycemic agents. Bioorg Med Chem Lett. 2009;19:1740-4. Search in Google Scholar

Nordin NA, Chai TW, Tan BL, Choi CL, Abd Halim AN, Hussain H, et al. Novel synthetic monothiourea aspirin derivatives bearing alkylated amines as potential antimicrobial agents. J Chem. 2017;2017. Search in Google Scholar

Li J, Tan JZ, Chen LL, Zhang J, Shen X, Mei CL, et al. Design, synthesis and antitumor evaluation of a new series of N‐substituted‐thiourea derivatives 1. Acta Pharmacol Sin. 2006;27(9):1259-71. Search in Google Scholar

Lu PC, Li HQ, Sun J, Zhou Y, Zhu HL. Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents. Bioorg Med Chem. 2010;18(13):4606-14. Search in Google Scholar

Yao J, Chen J, He Z, Sun W, Xu W. Design, synthesis and biological activities of thiourea containing sorafenib analogs as antitumor agents. Bioorg Med Chem. 2012;20(9):2923-9. Search in Google Scholar

Li HQ, Yan T, Yang Y, Shi L, Zhou CF, Zhu HL. Synthesis and structure–activity relationships of N-benzyl-N-(X-2-hydroxybenzyl)-N′-phenylureas and thioureas as antitumor agents. Bioorg Med Chem. 2010;18:305-13. Search in Google Scholar

Zhao Y, Wang C, Wu Z, Fang J, Zhu L. Synthesis and antitumor activity of novel aroylthiourea derivatives of podophyllotoxin. Invest New Drugs. 2012;30:17-24. Search in Google Scholar

Moeker J, Teruya K, Rossit S, Wilkinson BL, Lopez M, Bornaghi LF, et al. Design and synthesis of thiourea compounds that inhibit transmembrane anchored carbonic anhydrases. Bioorg Med Chem. 2012;20(7):2392-404. Search in Google Scholar

Huhtiniemi T, Suuronen T, Rinne VM, Wittekindt C, Kakkonen ML, Jarho E, et al; Leppanen, J. Oxadiazolecarbonylaminothioureas as SIRT1 and SIRT2 inhibitors. J Med Chem. 2008;51:4377-80. Search in Google Scholar

Gagic Z, Ruzic D, Djokovic N, Djikic T, Nikolic K. In silico Methods for Design of Kinase Inhibitors as Anticancer Drugs. Front Chem. 2020;7:873. Search in Google Scholar

Ferguson FM, Gray NS. Kinase inhibitors: the road ahead. Nat Rev Drug Discov. 2018;17(5):353-77. Search in Google Scholar

Akhtar MJ, Siddiqui AA, Khan AA, Ali Z, Dewangan RP, Pasha S, et al. Design, synthesis, docking and QSAR study of substituted benzimidazole linked oxadiazole as cytotoxic agents, EGFR and erbB2 receptor inhibitors. Eur J Med Chem. 2017;126:853-69. Search in Google Scholar

Luqmani YA. Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract. 2005;14:35–48. Search in Google Scholar

Wu Q, Yang Z, Nie Y, Shi Y, Fan D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett. 2014;347:159–66. Search in Google Scholar

Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019;2:141–160. Search in Google Scholar

Dallavalle S, Dobričić V, Lazzarato L, Gazzano E, Machuqueiro M, Pajeva I, et al. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist Updat. 2020; 50: 100682. Search in Google Scholar

Jin Y, Zhang W, Xu J, Wang H, Zhang Z, Chu C, et al. UCH-L1 involved in regulating the degradation of EGFR and promoting malignant properties in drug-resistant breast cancer. Int J Clin Exp Pathol. 2015;8(10):12500–8. Search in Google Scholar

To KK, Poon DC, Wei Y, Wang F, Lin G, Fu LW. Vatalanib sensitizes ABCB1 and ABCG2-overexpressing multidrug resistant colon cancer cells to chemotherapy under hypoxia. Biochem pharmacol. 2015;97(1):27-37. Search in Google Scholar

Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, et al. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 2020;11(9):1-2. Search in Google Scholar

Knuefermann C, Lu Y, Liu B, Jin W, Liang K, Wu L, et al. HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene. 2003;22(21):3205-12. Search in Google Scholar

ChemOffice Ultra 7.0.1, 2002, CambridgeSoft Corporation, Cambridge, MA, USA (http://www.cambridgesoft.com). Search in Google Scholar

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDock-Tools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16): 2785-91. Search in Google Scholar

OMEGA 2.5.1.4: OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com/. Search in Google Scholar

Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT. Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and the Cambridge Structural Database. J Chem Inf Model. 2010;50:572-84. Search in Google Scholar

BIOVIA, Dassault Systèmes, Discovery Studio Visualizer, 17.2.0.16349, San Diego: Dassault Systèmes, 2016. Search in Google Scholar

MAKE Receptor 3.2.0.2: OpenEye Scientific Software, Santa Fe, NM. https://www.eyesopen.com/. Search in Google Scholar

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J comput chem. 2010;31(2):455-61. Search in Google Scholar

FRED 3.2.0.2: OpenEye Scientific Software, Santa Fe, NM. https://www.eyesopen.com/. Search in Google Scholar

McGann M. FRED pose prediction and virtual screening accuracy. J Chem Inf Model. 2011;51:578-96. Search in Google Scholar

McGann M. FRED and HYBRID docking performance on standardized datasets. J Comput Aided Mol Des. 2012; 26: 897-906. Search in Google Scholar

Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, et al. Mercury: visualization and analysis of crystal structures. J Appl Crystallogr. 2006;39(3):453-7. Search in Google Scholar

Protein Data Bank available at http://www.rcsb.org/ Search in Google Scholar

Carugo O, Pongor S. A normalized root-mean-spuare distance for comparing protein three-dimensional structures. Protein Sci. 2001;10(7):1470-3. Search in Google Scholar

Stamos J, Sliwkowski MX, Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem. 2002;277(48):46265-72. Search in Google Scholar

Widiandani T, Siswandono S, Meiyanto E, Sulistyowaty MI, Purwanto BT, Hardjono S. New N-allylthiourea derivatives: synthesis, molecular docking and in vitro cytotoxicity studies. Trop J Pharm Res. 2018;17(8):1607-13. Search in Google Scholar

Rouse MB, Seefeld MA, Leber JD, McNulty KC, Sun L, Miller WH, et al. Aminofurazans as potent inhibitors of AKT kinase. Bioorg Med Chem Lett. 2009;19(5):1508-11. Search in Google Scholar

Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP. mTOR kinase structure, mechanism and regulation. Nature. 2013;497(7448):217-23. Search in Google Scholar

eISSN:
2956-0454
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, other