À propos de cet article

Citez

1. Osuka S, Nakanishi N, Murase T, Nakamura T, Goto M, Iwase A, et al. Animal models of polycystic ovary syn-drome: a review of hormone-induced rodent models focused on hypothalamus-pituitary-ovary axis and neuro-peptides. Reprod Med Biol. 2019, 18:151–60. doi: 10.1002/rmb2.1226210.1002/rmb2.12262 Search in Google Scholar

2. Paixão L, Ramos RB, Lavarda A et al. Animal models of hyperandrogenism and ovarian morphology changes as features of polycystic ovary syndrome: a systematic review. Reprod Biol Endocrinol 15, 12 (2017). https://doi.org/10.1186/s12958-017-0231-z10.1186/s12958-017-0231-z Search in Google Scholar

3. Haning RV Jr, Hua JJ, Hackett RJ, Wheeler CA, Frish-man GN, Seifer DB, et al. Dehydroepiandrosterone sul-fate and anovulation increase serum inhibin and affect follicular function during administration of gonadotro-pins. J Clin Endocrinol Metab 1994; 78:145–9. Search in Google Scholar

4. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, EscobarMorreale HF, Futterweit W, et al. The Andro-gen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril 2009; 91:456–88.10.1016/j.fertnstert.2008.06.035 Search in Google Scholar

5. Noroozzadeh M, Behboudi-Gandevani S, Zadeh-Vakili A, Ramezani TF. Hormone-induced rat model of poly-cystic ovary syndrome: A systematic review. Life Sci. 2017;191:259-272.10.1016/j.lfs.2017.10.020 Search in Google Scholar

6. Knudsen JF, Costoff A, Mahesh VB. Dehydroepian drosterone-induced polycystic ovaries and acyclicity in the rat. Fertil Steril 1975; 26:807–17.10.1016/S0015-0282(16)41297-5 Search in Google Scholar

7. Quandt LM, Hutz RJ. Induction by estradiol-17 beta of polycystic ovaries in the guinea pig. Biol Reprod 1993; 48:1088–94.10.1095/biolreprod48.5.10888481473 Search in Google Scholar

8. Takeo Y. Influence of continuous illumination on es-trous cycle of rats: time course of changes in levels of gonadotropins and ovarian steroids until occurrence of persistent estrus. Neuroendocrinology 1984; 39:97–104.10.1159/0001239646433219 Search in Google Scholar

9. Chung, F. F., Yao, C. C., and Wan, G. H. (2005). The associations between menstrual function and life style/working conditions among nurses in Taiwan. J. Occup. Health. 47, 149–156. doi: 10.1539/joh.47.14910.1539/joh.47.14915824480 Search in Google Scholar

10. Mesbah F, Moslem M, Vojdani Z, Mirkhani H. Does metformin improve in vitro maturation and ultrastruc-ture of oocytes retrieved from estradiol valerate polycys-tic ovary syndrome-induced rats. J Ovarian Res. 2015; 8:1-10.10.1186/s13048-015-0203-x465031826577050 Search in Google Scholar

11. Franks S. Can animal models of PCOS help in the direc-tion of early and effective therapeutic intervention in women with the syndrome? Endocrinology. 2015; doi: 10.1210/sr.2015-1420. Search in Google Scholar

12. Malikueo M, Benrick A, Stener-Victorin E. Rodent models of polycystic ovary syndrome: phenotypic presentation, pathophysiology and effects of different interventions. Semin Reprod Med. 2014; doi: 10.1055/s-0034-1371090.10.1055/s-0034-137109024715513 Search in Google Scholar

13. Dumesic DA, Oberfield SE, Stener-Victorin E, Mar-shall JC, Laven JS, Legro RS. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr Rev. 2015; 36(5):487-525.10.1210/er.2015-1018 Search in Google Scholar

14. Gorsic LK, Dapas M, Legro RS, Hayes MG, Ur-banek M. Functional genetic variation in the anti-Mül-lerian hormone pathway in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2019; 104(7):2855-74.10.1210/jc.2018-02178 Search in Google Scholar

15. Gorsic LK, Kosova G, Werstein B, et al. Pathogenic anti-Müllerian hormone variants in polycystic ovary syndrome. J Clin Endocrinol Metab. 2017; 102(8):2862-72.10.1210/jc.2017-00612 Search in Google Scholar

16. Dapas M, Sisk R, Legro RS, Urbanek M, Dunaif A, Hayes MG. Family-based quantitative trait metaanaly-sis implicates rare noncoding variants in DENND1A in polycystic ovary syndrome. J Clin Endocrinol Metab. 2019; 104(9):3835-50.10.1210/jc.2018-02496 Search in Google Scholar

17. Crisosto N, Codner E, Maliqueo M, et al. AntiMüllerian hormone levels in peripubertal daughters of women with polycystic ovary syndrome. J Clin Endo-crinol Metab. 2007; 92(7):2739-43.10.1210/jc.2007-0267 Search in Google Scholar

18. Crisosto N, Ladrón de Guevara A, Echiburú B, et al. Higher luteinizing hormone levels associated with an-timüllerian hormone in postmenarchal daughters of women with polycystic ovary syndrome. Fertil Steril. 2019; 111(2):381-8.10.1016/j.fertnstert.2018.10.011 Search in Google Scholar

19. Walters KA, Allan CM, Handelsman DJ. Rodent models for human polycystic ovary syndrome. Biol Reprod. 2012 May 10;86(5):149, 1-12. doi: 10.1095/biolreprod. 111.097808. PMID: 22337333. Search in Google Scholar

20. Sabuncu T, Vural H, Harma M, Harma M. Oxidative stress in polycystic ovary syndrome and its contribution to the risk of cardiovascular disease. Clin Biochem. 2001 Jul;34(5):407-13. doi: 10.1016/s0009-9120(01)00245-4. PMID: 11522279.10.1016/S0009-9120(01)00245-4 Search in Google Scholar

21. Duleba AJ, Dokras A. Is PCOS an inflammatory pro-cess? Fertil Steril. 2012 Jan;97(1):7-12. doi: 10.1016/j.fertnstert.2011.11.023. PMID: 22192135; PMCID: PMC3245829.10.1016/j.fertnstert.2011.11.023324582922192135 Search in Google Scholar

22. Fenkci V, Fenkci S, Yilmazer M, Serteser M. Decreased total antioxidant status and increased oxidative stress in women with polycystic ovary syndrome may contribute to the risk of cardiovascular disease. Fertil Steril. 2003 Jul;80(1):123-127. DOI: 10.1016/s0015-0282(03)005 71-5. Search in Google Scholar

23. Colín-González AL, Santana RA, Silva-Islas CA, Chánez-Cárdenas ME, Santamaría A, Maldonado PD. The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. Oxid Med Cell Longev. 2012;2012:907162. doi: 10.1155/2012/907162. Epub 2012 May 17. PMID: 22685624; PMCID: PMC3363007.10.1155/2012/907162336300722685624 Search in Google Scholar

24. Baillargeon JP, Nestler JE. Commentary: polycystic ovary syndrome: a syndrome of ovarian hypersensitivity to insulin? J Clin Endocrinol Metab. 2006; 91(1):22-4.10.1210/jc.2005-1804384653216263814 Search in Google Scholar

25. Nestler JE, Powers LP, Matt DW, et al. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. J Clin Endocrinol Metab.1991; 72(1):83-9.10.1210/jcem-72-1-83 Search in Google Scholar

26. Dahlgren E, Janson PO. Polycystic ovary syndrome-long-term metabolic consequences. Int J Gynaecol Ob-stet. 1994 Jan;44(1):3-8. doi: 10.1016/0020-7292(94)90015-9. PMID: 7907056.10.1016/0020-7292(94)90015-9 Search in Google Scholar

27. Roy S, Mahesh VB, Greenblatt RB. Effect of dehydroe-piandrosterone and delta4-androstenedione on the repro-ductive organs of female rats: production of cystic changes in the ovary. Nature 1962; 196:42–3.10.1038/196042a0 Search in Google Scholar

28. Wang D, Wang W, Liang Q, et al. DHEA-induced ovar-ian hyper-fibrosis is mediated by TGF-β signaling path-way. J Ovarian Res. 2018; 11:1-11.10.1186/s13048-017-0375-7 Search in Google Scholar

29. Liu W, Liu W, Fu Y, Wang Y, Zhang Y. BakFoong pills combined with metformin in the treatment of a polycys-tic ovarian syndrome rat model. Oncol Lett. 2015;10:1819-182510.3892/ol.2015.3466 Search in Google Scholar

30. Jang M, Lee MJ, Lee JM, et al. Oriental medicine Kyung-Ok-Ko pre- vents and alleviates dehydroepi-androsterone-induced polycystic ovarian syndrome in rats. PLoS ONE. 2014; 9:e87623.10.1371/journal.pone.0087623 Search in Google Scholar

31. Cussons AJ, Watts GF, Burke V, Shaw JE, Zimmet PZ, Stuckey BG. Cardiometabolic risk in polycystic ovary syndrome: a comparison of different approaches to de-fining the metabolic syndrome. Hum Reprod 2008;23: 2352–810.1093/humrep/den263 Search in Google Scholar

32. Trivax B, Azziz R. Diagnosis of polycystic ovary syn-drome. ClinObstetGynecol2007; 50:168–77.10.1097/GRF.0b013e31802f351b Search in Google Scholar

33. Apter D, Butzow T, Laughlin GA, Yen SS. Accelerated 24-hour luteinizing hormone pulsatile activity in adoles-cent girls with ovarian hyperandrogenism: relevance to the developmental phase of polycystic ovarian syn-drome. J Clin Endocrinol Metab 1994;79:119–25 Search in Google Scholar

34. Anderson E, Lee GY, O’Brien K. Polycystic ovarian condition in the dehydroepiandrosterone-treated rat model: hyperandrogenism and the resumption of meiosis are major initial events associated with cystogenesis of antral follicles. Anat Rec 1997; 249:44–53.10.1002/(SICI)1097-0185(199709)249:1<44::AID-AR6>3.0.CO;2-F Search in Google Scholar

35. Misugi T, Ozaki K, El Beltagy K, Tokuyama O, Honda K, Ishiko O. Insulin-lowering agents inhibit synthesis of testosterone in ovaries of DHEA-induced PCOS rats. Gynecol Obstet Invest. 2006;61(4):208-15. doi: 10.1159/000091496. Epub 2006 Feb 13. PMID: 16479139.10.1159/000091496 Search in Google Scholar

36. Brawer JR, Munoz M, Farookhi R. Development of the polycystic ovarian condition (PCO) in the estradiol val-erate-treated rat. Biol Reprod. 1986; 35:647-655.10.1095/biolreprod35.3.6473098314 Search in Google Scholar

37. Seow KM, Ting CH, Huang SW, Ho LT, Juan CC. The use of dehydroepiandrosterone-treated rats is not a good animal model for the study of metabolic abnormalities in polycystic ovary syndrome. Taiwan J Obstet Gynecol. 2018 Oct;57(5):696-704. doi: 10.1016/j.tjog.2018.08. 015. PMID: 30342654. Search in Google Scholar

38. Zhang H, Yi M, Zhang Y, Jin H, Zhang W, Yang J, Yan L, Li R, Zhao Y, Qiao J. High-fat diets exaggerate endo-crine and metabolic phenotypes in a rat model of DHEA-induced PCOS. Reproduction. 2016 Apr;151(4):431-41. doi: 10.1530/REP-15-0542. Epub 2016 Jan 26. PMID: 2681421010.1530/REP-15-054226814210 Search in Google Scholar

39. Beloosesky R, Gold R, Almog B, Sasson R, Dantes A, Land-Bracha A, et al. Induction of polycystic ovary by testosterone in immature female rats: modulation of apoptosis and attenuation of glucose/insulin ratio. Int J Mol Med 2004; 14:207–15.10.3892/ijmm.14.2.20715254767 Search in Google Scholar

40. Wu C, Lin F, Qiu S, Jiang Z. The characterization of obese polycystic ovary syndrome rat model suitable for exercise intervention. PLoS One. 2014 Jun 6;9(6):e99155. doi: 10.1371/journal.pone.0099155. PMID: 24905232; PMCID: PMC4048306.10.1371/journal.pone.0099155404830624905232 Search in Google Scholar

41. Kalhori Z, Soleimani Mehranjani M, Azadbakht M, Shariaatzadeh MA. Ovary stereological features and se-rum biochemical factors following induction of polycys-tic ovary syndrome with testosterone enanthate in mice: An experimental study. Int J Reprod Biomed. 2018 Apr;16(4):267-274. PMID: 29942935; PMCID: PMC6004592.10.29252/ijrm.16.4.267 Search in Google Scholar

42. Ota H, Fukushima M, Maki M. Endocrinological and histological aspects of the process of polycystic ovary formation in the rat treated with testosterone propionate. Tohoku J Exp Med 1983; 140:121–31.10.1620/tjem.140.1216612716 Search in Google Scholar

43. Mannerås L, Cajander S, Holmäng A, et al. A new rat model exhibiting both ovarian and metabolic character-istics of polycystic ovary syndrome. Endocrinology. 2007; 148:3781-91.10.1210/en.2007-016817495003 Search in Google Scholar

44. Keller J, Mandala M, Casson P, Osol G. Endothelial dys-function in a rat model of PCOS: Evidence of increased vasoconstrictor prostanoid activity. Endocrinology. 2011; 152:4927-36.10.1210/en.2011-142422028445 Search in Google Scholar

45. Liu JH, Garzo G, Morris S, Stuenkel C, Ulmann A, Yen SS. Disruption of follicular maturation and delay of ov-ulation after administration of the antiprogesterone RU486. J Clin Endocrinol Metab 1987; 65:1135–40.10.1210/jcem-65-6-11352824550 Search in Google Scholar

46. Ruiz A, Aguilar R, Tebar AM, Gaytan F, Sanchez-Cri-ado JE. RU486-treated rats show endocrine and morpho-logical responses to therapies analogous to responses of women with polycystic ovary syndrome treated with similar therapies. Biol Reprod 1996; 55:1284–91.10.1095/biolreprod55.6.12848949885 Search in Google Scholar

47. Corbin CJ, Trant JM, Walters KW, Conley AJ. Changes in testosterone metabolism associated with the evolution of placental and gonadal isozymes of porcine aromatase cytochrome P450. Endocrinology 1999; 140:5202–10.10.1210/endo.140.11.714010537150 Search in Google Scholar

48. Sommers SC. Polycystic ovaries revisited. In: Fenoglio CM, Wolff M, editors. Progress in surgical pathology. New York: Masson Publishing; 1980:221–32. Search in Google Scholar

49. Erickson GE, Yen SS. The polycystic ovary syndrome. In: Adashi EY, Leung PCK, editors. The ovary. New York: Raven Press; 1993:561–79. Search in Google Scholar

50. Kondo M, Osuka S, Iwase A, Nakahara T, Saito A, Bayasula, Nakamura T, Goto M, Kotani T, Kikkawa F. Increase of kisspeptin-positive cells in the hypothalamus of a rat model of polycystic ovary syndrome. Metab Brain Dis. 2016 Jun;31(3):673-81. doi: 10.1007/s11011-016-9807-0. Epub 2016 Feb 11. PMID: 26864582.10.1007/s11011-016-9807-026864582 Search in Google Scholar

51. Sánchez-Criado JE, Sánchez A, Ruiz A, Gaytán F. En-docrine and morphological features of cystic ovarian condition in antiprogesterone RU486-treated rats. Acta Endocrinol (Copenh). 1993 Sep;129(3):237-45. doi: 10.1530/acta.0.1290237. PMID: 8212989.10.1530/acta.0.12902378212989 Search in Google Scholar

52. Simard M, Brawer JR, Farookhi R. An intractable, ovary-independent impairment in hypothalamo-pituitary function in the estradiol-valerate-induced polycystic ovarian condition in the rat. Biol Reprod. 1987 Jun;36(5):1229-37. doi: 10.1095/biolreprod36.5.1229. PMID: 3113503.)10.1095/biolreprod36.5.12293113503 Search in Google Scholar

53. Dikmen A, Ergenoglu AM, Yeniel AO, Dilsiz OY, Er-can G, Yilmaz H. Evaluation of glycemic and oxida-tive/antioxidative status in the estradiol valerate-induced PCOS model of rats. Eur J Obstet Gynecol Reprod Biol. 2012 Jan;160(1):55-9. doi: 10.1016/j.ejogrb.2011.09.042. Epub 2011 Nov 8. PMID: 22071112.10.1016/j.ejogrb.2011.09.04222071112 Search in Google Scholar

54. Linares R, Rosas G, Vieyra E, Ramírez DA, Velázquez DR, Espinoza JA, Morán C, Domínguez R, Morales-Ledesma L. In Adult Rats With Polycystic Ovarian Syn-drome, Unilateral or Bilateral Vagotomy Modifies the Noradrenergic Concentration in the Ovaries and the Ce-liac Superior Mesenteric Ganglia in Different Ways. Front Physiol. 2019 Oct 22;10:1309. doi: 10.3389/fphys.2019.01309. PMID: 31695622; PMCID: PMC6817458.10.3389/fphys.2019.01309681745831695622 Search in Google Scholar

55. Schulster A, Farookhi R, Brawer JR. Polycystic ovarian condition in estradiol valerate-treated rats: spontaneous changes in characteristic endocrine features. Biol Re-prod. 1984; 31:587-93.10.1095/biolreprod31.3.5876435694 Search in Google Scholar

56. Karimzadeh L, Nabiuni M, Sheikholeslami A, Irian S. Bee venom treatment reduced C-reactive protein and improved follicle quality in a rat model of estradiol val-erate-induced polycystic ovarian syn-drome. J Venom Anim Toxins Incl Trop Dis. 2012; 18:384-92.10.1590/S1678-91992012000400006 Search in Google Scholar

57. Diamanti-Kandarakis E. Polycystic ovarian syndrome: pathophysiology, molecular aspects and clinical impli-cations. Expert Rev Mol Med 2008; 10:e3.10.1017/S146239940800059818230193 Search in Google Scholar

58. Baravalle C, Salvetti NR, Mira GA, Pezzone N, Ortega HH. Microscopic characterization of follicular structures in letrozolee-induced polycystic ovarian syndrome in the rat. Arch Med Res. 2006; 37:830-39.10.1016/j.arcmed.2006.04.00616971221 Search in Google Scholar

59. Maliqueo M, Sun M, Johansson J, et al. Continuous ad-ministration of a P450 aromatase inhibitor induces poly-cystic ovary syndrome with a metabolic and endocrine phenotype in female rats at adult age. Endocrinology. 2013; 154(1):434-45.10.1210/en.2012-169323183180 Search in Google Scholar

60. Fulghesu AM, Angioni S, Frau E, Belosi C, Apa R, Mioni R, et al. Ultrasound in polycystic ovary syndrome—the measuring of ovarian stroma and rela-tionship with circulating androgens: results of a multi-centric study. Hum Reprod 2007; 22: 2501–8.10.1093/humrep/dem20217635847 Search in Google Scholar

61. Kalsbeek, A., Fliers, E., Romijn, J. A., La Fleur, S. E., Wortel, J.,Bakker, O., Endert, E., and Buijs, R. M. (2001) The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology 142, 2677–268510.1210/endo.142.6.819711356719 Search in Google Scholar

62. Scheer, F. A., Kalsbeek, A., and Buijs, R. M. (2003) Car-diovascular control by the suprachiasmatic nucleus: neu-ral and neuroendocrine mechanisms in human and rat. Biol. Chem. 384,697–709 Search in Google Scholar

63. Scheer, F. A., Ter Horst, G. J., van der Vliet, J., and Buijs, R. M.(2001) Physiological and anatomic evidence for regulation of the heart by suprachiasmatic nucleus in rats. Am. J. Physiol. Heart10.1152/ajpheart.2001.280.3.H139111179089 Search in Google Scholar

64. Stener-Victorin E, Padmanabhan V, Walters KA, et al. Animal Models to Understand the Etiology and Patho-physiology of Polycystic Ovary Syndrome. Endocr Rev. 2020;41(4):538-576. doi:10.1210/endrev/bnaa01010.1210/endrev/bnaa010727970532310267 Search in Google Scholar

65. Milosević V, Trifunović S, Sekulić M, Sosić-Jurjević B, Filipović B, Negić N, Nestorović N, Manojlović Stojanoski M, Starcević V. Chronic exposure to constant light affects morphology and secretion of adrenal zona fasciculata cells in female rats. Gen Physiol Biophys. 2005 Sep;24(3):299-309. PMID: 16308425 Search in Google Scholar

66. Ryu Y, Kim SW, Kim YY, Ku SY. Animal Models for Human Polycystic Ovary Syndrome (PCOS) Focused on the Use of Indirect Hormonal Perturbations: A Review of the Literature. Int J Mol Sci. 2019 ;20(11):2720.10.3390/ijms20112720660035831163591 Search in Google Scholar

67. Nestorović N, Ristić N, Ajdžanović V, Trifunović S, Milošević V. Morphological and Functional Changes of Pi-tuitary GH and PRL Cells Following Prolonged Expo-sure of Female Rats to Constant Light. Serbian Journal of Experimental and Clinical Research. 2021;0(010.2478/sjecr-2019-0063 Search in Google Scholar

68. Meinhardt UJ, Ho KK. Modulation of growth hormone action by sex steroids. Clin Endocrinol (Oxf). 2006; 65(4): 413-2210.1111/j.1365-2265.2006.02676.x16984231 Search in Google Scholar

69. Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolac-tin: structure, function, and regulation of secretion. Physiol Rev. 2000; 80(4): 1523-63110.1152/physrev.2000.80.4.152311015620 Search in Google Scholar

70. Baldissera SF, Motta LD, Almeida MC, Antunes-Ro-drigues J. Proposal of an experimental model for the study of polycystic ovaries. Braz J Med Biol Res. 1991;24(7):747-51. PMID: 1823293. Search in Google Scholar

71. Chu W, Zhai J, Xu J, et al. Continuous Light-Induced PCOS-Like Changes in Reproduction, Metabolism, and Gut Microbiota in Sprague-Dawley Rats. Front Microbiol. 2020;10:3145. Published 2020 Jan 21. doi:10.3389/fmicb.2019.0314510.3389/fmicb.2019.03145699011232038578 Search in Google Scholar

72. Maganhin CC, Fuchs LF, Simões RS, Oliveira-Filho RM, de Jesus Simões M, Baracat EC, Soares JM Jr. Ef-fects of melatonin on ovarian follicles. Eur J Obstet Gynecol Reprod Biol. 2013 Feb;166(2):178-84. doi: 10.1016/j.ejogrb.2012.10.006. Epub 2012 Oct 24. PMID: 23102587.10.1016/j.ejogrb.2012.10.006 Search in Google Scholar

73. Xuezhi K, Lina J, Xueyong S, “Manifestation of Hyper-androgenism in the Continuous Light Exposure-Induced PCOS Rat Model”, BioMed Res., vol. 2015, Article ID 943694, 9 pages, 2015. https://doi.org/10.1155/2015/94369410.1155/2015/943694 Search in Google Scholar

74. Soule SG: Neuroendocrinology of the polycystic ovary syndrome. Baillieres Clin Endocrinol Metab. 1996, 10 (2): 205-219. 10.1016/S0950-351X(96)80071-110.1016/S0950-351X(96)80071-1 Search in Google Scholar

75. Zhai, HL., Wu, H., Xu, H. et al. Trace glucose and lipid metabolism in high androgen and high-fat diet induced polycystic ovary syndrome rats. Reprod Biol Endocrinol 10, 5 (2012). https://doi.org/10.1186/1477-7827-10-510.1186/1477-7827-10-5327836522276997 Search in Google Scholar

76. Roberts JS, Perets RA, Sarfert KS, Bowman JJ, Ozark PA, Whitworth GB, Blythe SN, Toporikova N. High-fat high-sugar diet induces polycystic ovary syndrome in a rodent model. Biol Reprod. 2017 Mar;96(3):551-562. doi: 10.1095/biolreprod.116.142786. Epub 2017 Jan 27. PMID: 28203719.10.1095/biolreprod.116.14278628203719 Search in Google Scholar

77. Patel R, Shah G. High-fat diet exposure from pre-puber-tal age induces polycystic ovary syndrome (PCOS) in rats. Reproduction. 2018 Feb;155(2):141-151. doi: 10.1530/REP-17-0584. Epub 2017 Dec 1. PMID: 29196492.10.1530/REP-17-058429196492 Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, other