Accès libre

A Study of No-Fines Alkali-Activated Concrete Using Binary Blends of Industrial Wastes

, ,  et   
26 sept. 2025
À propos de cet article

Citez
Télécharger la couverture

Abdulsalam Arafa, S., Mohd Ali, A. Z., Rahmat, S. N. & Lee, Y. L. (2017). Optimum Mix for Pervious Geopolymer Concrete (GEOCRETE) Based on Water Permeability and Compres-sive Strength. MATEC Web of Conferences, 103, 1–9. https://doi.org/10.1051/matecconf/201710301024 Search in Google Scholar

Ahmed, H. U., Mohammed, A. A., Rafiq, S., Mohammed, A. S., Mosavi, A., Sor, N. H. & Qaidi, S. M. A. (2021). Compressive strength of sustainable geopolymer concrete composites: A state-of-the-art review. Sustainability (Switzerland), 13(24). https://doi.org/10.3390/su132413502 Search in Google Scholar

ASTM C 618. Standard. (2021). ASTM C 618. Standard. 10 (Reapproved), 1–5. https://doi.org/10.1520/C0618-23E01.2 Search in Google Scholar

ASTM C1688/C1688M-14a (2014). (2014). Standard test method for density and void content of freshly mixed pervious concrete. ASTM International, West Conshohocken, PA., USA, 1–3. https://doi.org/10.1520/C1688 Search in Google Scholar

Athena Sustainable Materials Institute. (2019). Appendix D : NRMCA Member National and Re-gional LCA Benchmark ( Industry Average ) Report – V 3 . 0. Nov. 2019, 52–93. Search in Google Scholar

Azad, A., Sheikh, M. N. & Hai, F. I. (2024). A critical review of the mechanisms, factors, and performance of pervious concrete to remove contaminants from stormwater runoff. Water Research, 251(Dec. 2023), 121101. https://doi.org/10.1016/j.watres.2024.121101 Search in Google Scholar

Bianco, I., Ap Dafydd Tomos, B. & Vinai, R. (2021). Analysis of the environmental impacts of alkali-activated concrete produced with waste glass-derived silicate activator – A LCA study. Journal of Cleaner Production, 316 (July), 128383. https://doi.org/10.1016/j.jclepro.2021.128383 Search in Google Scholar

BIS:5816. (1999). Splitting Tensile Strength of Concrete - Method of Test. Bureau of Indian Standards. Search in Google Scholar

C1701, A. (2018). Standard Test Method for Infiltration Rate of In Place Pervious Concrete. Des-ignation: E 778 – 87 (Reapproved 2004), i(Reapproved), 3–5. https://doi.org/10.1520/C1701 Search in Google Scholar

Castillo, H., Collado, H., Droguett, T., Sánchez, S., Vesely, M., Garrido, P. & Palma, S. (2021). Factors affecting the compressive strength of geopolymers: A review. Minerals, 11(12), 1–28. https://doi.org/10.3390/min11121317 Search in Google Scholar

Chang, J. J., Yeih, W., Chung, T. J. & Huang, R. (2016). Properties of pervious concrete made with electric arc furnace slag and alkali-activated slag cement. Construction and Building Materials, 109, 34–40. https://doi.org/10.1016/j.conbuildmat.2016.01.049 Search in Google Scholar

Chavan, V. A., Institutions, A. E., Singh, A., Institutions, A. E., Udaynadh, B., Institutions, A. E., Erra, A. & Institutions, A. E. (2024). GENERAL APPLICATIONS OF NANOMATERI-ALS. May. https://doi.org/10.58532/V3BECS13P1CH10 Search in Google Scholar

Cong, P. & Cheng, Y. (2021). Advances in geopolymer materials: A comprehensive review. Journal of Traffic and Transportation Engineering (English ed.), 8(3), 283–314. https://doi.org/10.1016/j.jtte.2021.03.004 Search in Google Scholar

Das, K. K., Sharma, R., Dutta, S., Seo, J. & Jang, J. G. (2023). Effects of curing regime, cement type, and water-to-cement ratio on the physicochemical, mechanical, and hydraulic properties of pervious mortar. Construction and Building Materials, 401(July), 132897. https://doi.org/10.1016/j.conbuildmat.2023.132897 Search in Google Scholar

Davidovits, P. J. (2002). 30 Years of Successes and Failures in Geopolymer Applications. Market Trends and Potential Breakthroughs. Geopolymer 2002 Conference, 1–16. Search in Google Scholar

Elango, K. S. & Revathi, V. (2017a). Fal-G Binder Pervious Concrete. Construction and Building Materials, 140, 91–99. https://doi.org/10.1016/j.conbuildmat.2017.02.086 Search in Google Scholar

Elango, K. S. & Revathi, V. (2017b). Fal-G Binder Pervious Concrete. Construction and Building Materials, 140, 91–99. https://doi.org/10.1016/j.conbuildmat.2017.02.086 Search in Google Scholar

Farooq, F., Jin, X., Faisal Javed, M., Akbar, A., Izhar Shah, M., Aslam, F. & Alyousef, R. (2021). Geopolymer concrete as sustainable material: A state of the art review. Construction and Building Materials, 306 (Sept.), 124762. https://doi.org/10.1016/j.conbuildmat.2021.124762 Search in Google Scholar

Hardjito, D. & Rangan, B. V. (2005). Development and Properties of Low-calcium Fly Ash Based Geopolymer Concrete. https://www.researchgate.net/publication/228794879 Search in Google Scholar

Huang, W. & Wang, H. (2022). Multi-aspect engineering properties and sustainability impacts of geopolymer pervious concrete. Composites Part B: Engineering, 242(May), 110035. https://doi.org/10.1016/j.compositesb.2022.110035 Search in Google Scholar

IS 2386- Part III. (1963). Method of Test for aggregate for concrete. Part III- Specific gravity, density, voids, absorption and bulking. Bureau of Indian Standards, New Delhi, (Reaf-firmed 2002) Search in Google Scholar

IS 3812: Part 1. (2013). Specification for Pulverized Fuel Ash (For Use as Pozzolana in Cement, Cement Mortar and Concrete). Bureau of Indian Standards, New Delhi, India, 1–12. Search in Google Scholar

IS:516 Part-1/Sec-1. (2021). Hardened concrete - Methods of test. Bureau of Indian Standards IS 516-2021, New Delhi, India, 54 (Aug.), 1–20. Search in Google Scholar

Kanagaraj, B., Anand, N., Johnson Alengaram, U., Samuvel Raj, R. & Kiran, T. (2022a). Exem-plification of sustainable sodium silicate waste sediments as coarse aggregates in the per-formance evaluation of geopolymer concrete. Construction and Building Materials, 330 (Dec. 2021), 127135. https://doi.org/10.1016/j.conbuildmat.2022.127135 Search in Google Scholar

Kanagaraj, B., Anand, N., Johnson Alengaram, U., Samuvel Raj, R., & Kiran, T. (2022b). Exem-plification of sustainable sodium silicate waste sediments as coarse aggregates in the per-formance evaluation of geopolymer concrete. Construction and Building Materials, 330 (Dec. 2021), 127135. https://doi.org/10.1016/j.conbuildmat.2022.127135 Search in Google Scholar

Kulasuriya, C., Vimonsatit, V. & Dias, W. P. S. (2021). Performance based energy, ecological and financialcosts of a sustainable alternative cement. Journal of Cleaner Production, 287, 125035. https://doi.org/10.1016/j.jclepro.2020.125035 Search in Google Scholar

Lin, K. L., Lin, W. T. Korniejenko, K., & Hsu, H. M. (2022). Application of ternary cementless hybrid binders for pervious concrete. Construction and Building Materials, 346 (May), 128497. https://doi.org/10.1016/j.conbuildmat.2022.128497 Search in Google Scholar

Luo, Y. P., Lv, Y., Wang, D., Jiang, Z. & Xue, G. (2023). The influence of coarse aggregate gra-dation on the mechanical properties, durability, and plantability of geopolymer pervious concrete. Construction and Building Materials, 382 (April), 131246. https://doi.org/10.1016/j.conbuildmat.2023.131246 Search in Google Scholar

Marathe, S., Sadowski, Ł. & Shree, N. (2024). Geopolymer and alkali-activated permeable con-crete pavements: Bibliometrics and systematic current state of the art review, applications, and perspectives. Construction and Building Materials, 421 (Dec. 2023). https://doi.org/10.1016/j.conbuildmat.2024.135586 Search in Google Scholar

Nanda, R. P. & Priya, N. (2024). Geopolymer as stabilising materials in pavement constructions: A review. Cleaner Waste Systems, 7 (Aug. 2023), 100134. https://doi.org/10.1016/j.clwas.2024.100134 Search in Google Scholar

Narattha, C., Wattanasiriwech, S. & Wattanasiriwech, D. (2023a). Effect of magnesium sulfate on properties of low calcium fly ash based-geopolymer- treated hemp shiv bio-concrete. Con-struction and Building Materials, 392 (Oct. 2022), 131714. https://doi.org/10.1016/j.conbuildmat.2023.131714 Search in Google Scholar

Narattha, C., Wattanasiriwech, S. & Wattanasiriwech, D. (2023b). Effect of magnesium sulfate on properties of low calcium fly ash based-geopolymer- treated hemp shiv bio-concrete. Con-struction and Building Materials, 392 (Oct. 2022), 131714. https://doi.org/10.1016/j.conbuildmat.2023.131714 Search in Google Scholar

National Ready Mixed Concrete Association. (2015). Pervious Concrete Pavement Maintenance and Operations Guide. Search in Google Scholar

Nazeer, M., Kapoor, K. & Singh, S. P. (2023). Strength, durability and microstructural investiga-tions on pervious concrete made with fly ash and silica fume as supplementary cementi-tious materials. Journal of Building Engineering, 69 (Mar.), 106275. https://doi.org/10.1016/j.jobe.2023.106275 Search in Google Scholar

Podolsky, Z., Liu, J., Dinh, H., Doh, J. H., Guerrieri, M. & Fragomeni, S. (2021). State of the art on the application of waste materials in geopolymer concrete. Case Studies in Construction Materials, 15 (April), e00637. https://doi.org/10.1016/j.cscm.2021.e00637 Search in Google Scholar

Provis, J. L. (2018). Alkali-activated materials. Cement and Concrete Research, 114, 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009 Search in Google Scholar

Sai Sandeep, S., Kalesha, S., Himath Kumar, Y. & Sarath Chandra Kumar, B. (2017). Effect of molarity on compressive strength of geopolymer mortar with GGBS and metakaoline. Inter-national Journal of Civil Engineering and Technology, 8(4), 935–944. Search in Google Scholar

Sambucci, M., Sibai, A. & Valente, M. (2021). Recent advances in geopolymer technology. A po-tential eco-friendly solution in the construction materials industry: A review. Journal of Composites Science, 5(4). https://doi.org/10.3390/jcs5040109 Search in Google Scholar

Sata, V., Wongsa, A. & Chindaprasirt, P. (2013a). Properties of pervious geopolymer concrete using recycled aggregates. Construction and Building Materials, 42, 33–39. https://doi.org/10.1016/j.conbuildmat.2012.12.046 Search in Google Scholar

Sata, V., Wongsa, A. & Chindaprasirt, P. (2013b). Properties of pervious geopolymer concrete using recycled aggregates. Construction and Building Materials, 42, 33–39. https://doi.org/10.1016/j.conbuildmat.2012.12.046 Search in Google Scholar

Sata, V., Wongsa, A. & Chindaprasirt, P. (2013b). Properties of pervious geopolymer concrete using recycled aggregates. Construction and Building Materials, 42, 33–39. https://doi.org/10.1016/j.conbuildmat.2012.12.046 Search in Google Scholar

Singh, R. P., Vanapalli, K. R., Cheela, V. R. S., Peddireddy, S. R., Sharma, H. B. & Mohanty, B. (2023). Fly ash, GGBS, and silica fume based geopolymer concrete with recycled aggre-gates: Properties and environmental impacts. Construction and Building Materials, 378 (Jan.), 131168. https://doi.org/10.1016/j.conbuildmat.2023.131168 Search in Google Scholar

Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P. & Chindaprasirt, P. (2011). NaOH-activated ground flyash geopolymer cured at ambient temperature. Fuel, 90(6), 2118–2124. https://doi.org/10.1016/j.fuel.2011.01.018 Search in Google Scholar

Sun, Z., Lin, X. & Vollpracht, A. (2018a). Pervious concrete made of alkali activated slag and geopolymers. Construction and Building Materials, 189, 797–803. https://doi.org/10.1016/j.conbuildmat.2018.09.067 Search in Google Scholar

Sun, Z., Lin, X. & Vollpracht, A. (2018b). Pervious concrete made of alkali activated slag and geopolymers. Construction and Building Materials, 189, 797–803. https://doi.org/10.1016/j.conbuildmat.2018.09.067 Search in Google Scholar

Tho-In, T., Sata, V., Chindaprasirt, P. & Jaturapitakkul, C. (2012). Pervious high-calcium fly ash geopolymer concrete. Construction and Building Materials, 30 (325), 366–371. https://doi.org/10.1016/j.conbuildmat.2011.12.028 Search in Google Scholar

Thumrongvut, J., Seangatith, S., Phetchuay, C. & Suksiripattanapong, C. (2022). Comparative Experimental Study of Sustainable Reinforced Portland Cement Concrete and Geopolymer Concrete Beams Using Rice Husk Ash. Sustainability (Switzerland), 14(16). https://doi.org/10.3390/su14169856 Search in Google Scholar

Turkey, F. A., Beddu, S. B., Ahmed, A. N. & Al-Hubboubi, S. K. (2022). Effect of high tempera-tures on the properties of lightweight geopolymer concrete based fly ash and glass powder mixtures. Case Studies in Construction Materials, 17 (Sept.), e01489. https://doi.org/10.1016/j.cscm.2022.e01489 Search in Google Scholar

Wang, Z., Liu, Z., Zeng, F., He, K. & Guo, S. (2024). Review on frost resistance and anti-clogging of pervious concrete. Journal of Traffi and Transportation Engineering (English ed.), xxx. https://doi.org/10.1016/j.jtte.2023.05.008 Search in Google Scholar

Zeng, Q., Jike, N., Xu, C., Yang, R., Peng, Y., Wang, J., Gong, F., Zhang, M. & Zhao, Y. (2022). Total recycling of low-quality urban-fringe construction and demolition waste towards the development of sustainable cement-free pervious concrete: The proof of concept. Journal of Cleaner Production, 352 (Mar.), 131464. https://doi.org/10.1016/j.jclepro.2022.131464 Search in Google Scholar

Zheng, X., Pan, J., Easa, S., Fu, T., Liu, H., Liu, W. & Qiu, R. (2023). Utilization of copper slag waste in alkali-activated metakaolin pervious concrete. Journal of Building Engineering, 76 (Apr), 107246. https://doi.org/10.1016/j.jobe.2023.107246 Search in Google Scholar

Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Ingénierie, Présentations et aperçus, Ingénierie, autres