1. bookVolume 30 (2022): Edition 2 (June 2022)
Détails du magazine
License
Format
Magazine
eISSN
1338-3973
Première parution
23 May 2011
Périodicité
4 fois par an
Langues
Anglais
access type Accès libre

Lidar-Based Mobile Mapping System for an Indoor Environment

Publié en ligne: 12 Jul 2022
Volume & Edition: Volume 30 (2022) - Edition 2 (June 2022)
Pages: 47 - 58
Détails du magazine
License
Format
Magazine
eISSN
1338-3973
Première parution
23 May 2011
Périodicité
4 fois par an
Langues
Anglais
Abstract

The article deals with developing and testing a low-cost measuring system for simultaneous localisation and mapping (SLAM) in an indoor environment. The measuring system consists of three orthogonally-placed 2D lidars, a robotic platform with two wheel speed sensors, and an inertial measuring unit (IMU). The paper describes the data processing model used for both the estimation of the trajectory of SLAM and the creation of a 3D model of the environment based on the estimated trajectory of the SLAM. The main problem of SLAM usage is the accumulation of errors caused by the imperfect transformation of two scans into each other. The data processing developed includes an automatic evaluation and correction of the slope of the lidar. Furthermore, during the calculation of the trajectory, a repeatedly traversed area is identified (loop closure), which enables the optimisation of the trajectory determined. The system was tested in the indoor environment of the Faculty of Civil Engineering of the Slovak University of Technology in Bratislava.

Keywords

Biber, P. - Straßer, W. (2003) The normal distributions transform: A new approach to laser scan matching. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003). IEEE, 2003. pp. 2743–2748.Search in Google Scholar

Biström, B. (2019) Comparative analysis of properties of LiDAR-based point clouds versus camera-based point clouds for 3D reconstruction using SLAM algorithms. 2019.Search in Google Scholar

Camera, Z. E. D. (2021) SDK Overview. Available online: Stereolabs.com/assets/datasheets/zed2-camera-datasheet.pdf (accessed on 16 Aug. 2021).Search in Google Scholar

Chen, S., et al. (2021) A LiDAR/Visual SLAM Backend with Loop Closure Detection and Graph Optimization. Remote Sensing, 2021, Vol. 13, No. 14, p. 2720.10.3390/rs13142720Search in Google Scholar

Cummins, M. - Newman, P. (2007) Probabilistic appearance based navigation and loop closing. In: Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE 2007, pp. 2042–2048.10.1109/ROBOT.2007.363622Search in Google Scholar

Fernando, M. et al. (2014) Two different tools for three-dimensional mapping: DE-based scan matching and feature-based loop detection. In: Robotica. 2014, vol. 32, No.1, pp. 19–41.Search in Google Scholar

Grisetti, G. et al. (2010) A tutorial on graph-based SLAM. In: IEEE Intelligent Transportation Systems Magazine. 2010, vol. 2, No. 4, pp. 31–43.10.1109/MITS.2010.939925Search in Google Scholar

Gutmann, J. S. - Konolige, K. (1999) Incremental mapping of large cyclic environments. In: Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA’99. IEEE, 1999, pp. 318–325.10.1109/CIRA.1999.810068Search in Google Scholar

Kudriashov, A. et al. (2020) SLAM Techniques Application for Mobile Robot in Rough Terrain. Springer International Publishing 2020. ISBN 978-3-030-48980-9.10.1007/978-3-030-48981-6Search in Google Scholar

Kümmerle, R. et al. (2009) On measuring the accuracy of SLAM algorithms. In: Autonomous Robots. 2009, vol. 27, No.4, pp. 387–407.10.1007/s10514-009-9155-6Search in Google Scholar

Lu, F. - Milios, E. (1997) Globally consistent range scan alignment for environment mapping. In: Autonomous robots. 1997, vol. 4, No. 4, pp. 333–349.Search in Google Scholar

Montemerlo, M. - Thrun, S. (2007) FastSLAM: A scalable method for the simultaneous localization and mapping problem in robotics. Springer 2007. ISBN 978-3-540-46399-3.Search in Google Scholar

NVIDIA Autonomous Machines (2021) Jetson Nano Developer Kit (2021), [online] Available: https://developer.nvidia.com/embedded/jetson-nano-developer-kit (accessed on 30 May 2021).Search in Google Scholar

Prokhorov, D. et al. (2019) Measuring robustness of Visual SLAM. In: 2019 16th International Conference on Machine Vision Applications (MVA). IEEE 2019. pp. 1–6.10.23919/MVA.2019.8758020Search in Google Scholar

Raspberry Pi (Trading) Ltd. (2019) Raspberry Pi 4 Model B Datasheet. Available at: https://datasheets.raspberrypi.com/rpi4/raspber-ry-pi-4-datasheet.pdfSearch in Google Scholar

Skrzypczyński, P. (2009) Simultaneous localization and mapping: A feature-based probabilistic approach. In: International Journal of Applied Mathematics and Computer Science. 2009, vol. 19, No. 4, pp. 575–588.10.2478/v10006-009-0045-zSearch in Google Scholar

Shanghai Slamtec CO. (2020) HANGHAI SLAMTEC CO. RPLIDAR A1. Low cost 360 degree laser range scanner. Introduction and datasheet. Model: A1M8. Available at: http://bucket.download.slamtec.com/7fe7e3656e811ab1a645753af40809f05fa7ddcd/LD108_SLAMTEC_rplidar_datasheet_A1M8_v2.4_en.pdf (accessed on 14 April 2022).Search in Google Scholar

Sensonor AS. (2013) STIM300 Inertia Measurement Unit. Available at: https://www.sensonor.com/media/1132/ts1524r9-data-sheet-stim300.pdf, (accessed on 14 April 2022).Search in Google Scholar

Stachniss, C. (2009) Robotic mapping and exploration. Springer 2009, vol. 55.10.1007/978-3-642-01097-2Search in Google Scholar

Thrun, S., et al. (2003) A system for volumetric robotic mapping of abandoned mines. In: 2003 IEEE International Conference on Robotics and Automation. IEEE, 2003, pp. 4270–4275.10.1109/ROBOT.2003.1242260Search in Google Scholar

Valencia, R. - Andrade C., J. (2018) Mapping, planning and exploration with Pose SLAM. Berlín: Springer, 2018.10.1007/978-3-319-60603-3Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo