1. bookVolume 30 (2022): Edition 2 (June 2022)
Détails du magazine
License
Format
Magazine
eISSN
1338-3973
Première parution
23 May 2011
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Possibilities of Applying Multivariable Regression in Groundwater Data Series along a Riverbank Area

Publié en ligne: 12 Jul 2022
Volume & Edition: Volume 30 (2022) - Edition 2 (June 2022)
Pages: 30 - 37
Détails du magazine
License
Format
Magazine
eISSN
1338-3973
Première parution
23 May 2011
Périodicité
4 fois par an
Langues
Anglais

Al-Harahsheh, S. – Al-Taani, A. A. – Al-Amoush, H. R. (2020) Assessing the Impact of Zaatari Syrian Refugee Camp in Central North Jordan on the Groundwater Quality. Jordan Journal of Earth and Environmental Sciences, 11 (4) 260–271, 2020.Search in Google Scholar

Bear, J. – Verruijt, A. (1992) Modeling Groundwater Flow and Pollution, D. Reidel Publishing Co., 414 pp. 1992Search in Google Scholar

Conant, B. – Robinson, C. E. – Hinton, M. J. – Russell, H. A. J. (2019) A framework for conceptualizing groundwater-surface water interactions and identifying potential impacts on water quality, water quantity, and ecosystems. Journal of Hydrology, 574, 609–627, 2019. https://doi.org/10.1016/j.jhydrol.2019.04.050.Search in Google Scholar

Csoma, R. – Gálos, M. (2009) A Duna vízjárásának hatása a talajvíz-viszonyokra az Infopark-Budapest térségében (The impact of the Danube’s waterlevel fluctuation on the groundwater conditions in the Infopark-Budapest area). Hidrológiai Közlöny 89, 2009.Search in Google Scholar

Dulovicová, R. – Velísková, Y. – Schűgerl, R. (2020) Determination and comparison of hydraulic conductivity values of bed silts along Chotárny channel using grain size analysis. Acta Hydrologica Slovaca. Vol. 21, No. 2, pp. 139 – 144, 2020. DOI: 10.31577/ahs-2020-0021.02.0017.Ouvrir le DOISearch in Google Scholar

Fleckenstein, J. H. – Krause, S. – Hannah, D. M. – Boano F. (2010) Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics. Journal of Advances in Water Resources,33(11), 1291–1295., 2010. https://doi.org/10.1016/j.advwatres.2010.09.011Search in Google Scholar

Google Earth https://earth.google.com/Search in Google Scholar

Ihrig, D. (1973) A magyar vízszabályozás története (The history of the water regulation in Hungary), Vizdok, Budapest, 1973.Search in Google Scholar

Julínek, T. – Duchan, D. – Říha, J. (2020) Mapping of uplift hazard due to rising groundwater level during floods. J Flood Risk Manag, Vol. 13, No. 4., pp. 162–174, 2020. https://doi.org/10.1111/jfr3.12601.Search in Google Scholar

Khadri, S. F. R. – Pande, C. H. (2016) Ground water flow modeling for calibrating steady state using MODFLOW software: a case study of Mahesh River basin, India. Model. Earth Syst. Environ. 2016 2:39, 2016, https://doi.org/10.1007/s40808-015-0049-7.Search in Google Scholar

Kontur, I. – Koris, K. – Winter, J. (1993) Hidrológiai számítások (Hydrological calculations), Akadémiai Kiadó, Budapest, 1993.Search in Google Scholar

Lükő, G. – Megyesi, T. B. – Wagner, F. (2015) Talajvízjárás folyóparti területen kisvizes időszakban (Groundwater regime at a riverside area in low water period), Student Research Society, Budapest University of Technology and Economics, 2015.Search in Google Scholar

Owamah, H. I. (2019) Groundwater quality parameters-correlation and Microbial analysis. Nigerian Journal of Technology (NIJO-TECH) Vol. 38, No. 2, April, pp. 526–531, 2019.10.4314/njt.v38i2.32Search in Google Scholar

Říha, J. (2019) Groundwater Flow Problems and Their Modelling, In: Zelenakova, M., Fialova, J., Negm, A.M. Assessment and protection of Water Resources in the Czech Republic, Springer Water, pp. 175 – 199, 2020, https://doi.org/10.1007/978-3-030-18363-9.Search in Google Scholar

Šoltész, A. – Baroková, D. – Červenanská, M. – Janík, A. (2016) Hydrodynamic analysis of interaction between river flow and ground water. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 1, pp. 823–830, 2016.Search in Google Scholar

Szivós, B. – Csoma, R. – Gálos, M. (2013) A Darcy-féle áteresztőképességi együttható eloszlásának vizsgálata a Lágymányosi-öblözet területén (The distribution of Darcy coefficient of Seepage at the Lágymányos region). Mérnökgeológia – Kőzetmechanika 2013 (Engineering geology – Rock mechanics 2013), Hantken Kiadó, Budapest, 2013.Search in Google Scholar

Tirogo J. – Jost, A. – Biaou, A. – Valdes-Lao, D. – Koussoubé, Y. – Ribstein, P. (2016) Climate Variability and Groundwater Response: A Case Study in Burkina Faso (West Africa), Water 2016, 8, 171, 2016 https://doi.org/10.3390/w8050171.Search in Google Scholar

Tőry, K. (1952) A Duna és szabályozása (The Danube and its regulation). Akadémiai Kiadó, Budapest, 1952.Search in Google Scholar

Wagner, F. (2021) The reconstruction possibilities of groundwater data series with gaps introduced at a pilot area in Budapest, CYSENI, Jaunoji energetika 17, pp. 1266–1275, 10 pp, 2021.Search in Google Scholar

Vízrajzi Évkönyv (1996 – 2006) CI. - CXI. kötetek. Vízgazdálkodási Tudományos Kutató Központ. Budapest. (Hydrographic Yearbook 1996 – 2006. Vols. CI. - CXI. Research Centre of Water Management).Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo