Accès libre

Analysis of Beams with Transversal Gradations of the Young's Modulus and Variable Depths by the Meshless Method

À propos de cet article

Citez

A numerical analysis based on the meshless local Petrov- Galerkin (MLPG) method is proposed for a functionally graded material FGM (FGMfunctionally graded material) beam. The planar bending of the beam is considered with a transversal gradation of Young's modulus and a variable depth of the beam. The collocation formulation is constructed from the equilibrium equations for the mechanical fields. Dirac's delta function is employed as a test function in the derivation of a strong formulation. The Moving Least Squares (MLS) approximation technique is applied for an approximation of the spatial variations of all the physical quantities. An investigation of the accuracy, the convergence of the accuracy, the computational efficiency and the effect of the level of the gradation of Young's modulus on the behaviour of coupled mechanical fields is presented in various boundary value problems for a rectangular beam with a functionally graded Young's modulus.

eISSN:
1338-3973
ISSN:
1210-3896
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Ingénierie, Présentations et aperçus, autres