Efficient and conservative estimation reliability analysis of strip footing on spatially variable c - ϕ soil using random finite element limit analysis
This work is licensed under the Creative Commons Attribution 4.0 International License.
Ali, A., Lyamin, A. V., Huang, J., Li, J. H., Cassidy, M. J., & Sloan, S. W. (2017). Probabilistic stability assessment using adaptive limit analysis and random fields. Acta Geotechnica, 12(4), 937–948. https://doi.org/10.1007/s11440-016-0505-1AliA.LyaminA. V.HuangJ.LiJ. H.CassidyM. J.SloanS. W.2017Probabilistic stability assessment using adaptive limit analysis and random fieldsActa Geotechnica124937948https://doi.org/10.1007/s11440-016-0505-1Search in Google Scholar
Ali, A., Lyamin, A. V., Huang, J., Sloan, S. W., & Cassidy, M. (2016). Effect of Spatial Correlation Length on the Bearing Capacity of an Eccentrically Loaded Strip Footing. In H. W. Huang, J. Li, J. Zhang, & Chen J.B. (Eds.), APSSRA.AliA.LyaminA. V.HuangJ.SloanS. W.CassidyM.2016Effect of Spatial Correlation Length on the Bearing Capacity of an Eccentrically Loaded Strip FootingInHuangH. W.LiJ.ZhangJ.ChenJ.B.(Eds.),APSSRASearch in Google Scholar
Au, S.-K., & Beck, J. L. (2001). Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics, 16(4), 263–277. https://doi.org/10.1016/S0266-8920(01)00019-4AuS.-K.BeckJ. L.2001Estimation of small failure probabilities in high dimensions by subset simulationProbabilistic Engineering Mechanics164263277https://doi.org/10.1016/S0266-8920(01)00019-4Search in Google Scholar
Chen, X.-J., Fu, Y., & Liu, Y. (2022). Random finite element analysis on uplift bearing capacity and failure mechanisms of square plate anchors in spatially variable clay. Engineering Geology, 304, 106677. https://doi.org/10.1016/j.enggeo.2022.106677ChenX.-J.FuY.LiuY.2022Random finite element analysis on uplift bearing capacity and failure mechanisms of square plate anchors in spatially variable clayEngineering Geology304106677https://doi.org/10.1016/j.enggeo.2022.106677Search in Google Scholar
Cheng, P., Guo, J., Yao, K., & Chen, X. (2023). Numerical investigation on pullout capacity of helical piles under combined loading in spatially random clay. Marine Georesources & Geotechnology, 41(10), 1118–1131. https://doi.org/10.1080/1064119X.2022.2120843ChengP.GuoJ.YaoK.ChenX.2023Numerical investigation on pullout capacity of helical piles under combined loading in spatially random clayMarine Georesources & Geotechnology411011181131https://doi.org/10.1080/1064119X.2022.2120843Search in Google Scholar
Ching, J., Wu, T. J., Stuedlein, A. W., & Bong, T. (2018). Estimating horizontal scale of fluctuation with limited CPT soundings. Geoscience Frontiers, 9(6), 1597–1608. https://doi.org/10.1016/j.gsf.2017.11.008ChingJ.WuT. J.StuedleinA. W.BongT.2018Estimating horizontal scale of fluctuation with limited CPT soundingsGeoscience Frontiers9615971608https://doi.org/10.1016/j.gsf.2017.11.008Search in Google Scholar
Chwała, M., Komatsu, G., & Haruyama, J. (2024). Structural stability of lunar lava tubes with consideration of variable cross-section geometry. Icarus, 411. https://doi.org/10.1016/j.icarus.2023.115928ChwałaM.KomatsuG.HaruyamaJ.2024Structural stability of lunar lava tubes with consideration of variable cross-section geometryIcarus411https://doi.org/10.1016/j.icarus.2023.115928Search in Google Scholar
Chwała, M., & Puła, W. (2020). Evaluation of shallow foundation bearing capacity in the case of a two-layered soil and spatial variability in soil strength parameters. PLoS One, 15(4), e0231992.ChwałaM.PułaW.2020Evaluation of shallow foundation bearing capacity in the case of a two-layered soil and spatial variability in soil strength parametersPLoS One154e0231992Search in Google Scholar
Cho, S. E., & Park, H. C. (2010). Effect of spatial variability of cross-correlated soil properties on bearing capacity of strip footing. International Journal for Numerical and Analytical Methods in Geomechanics, 34(1), 1–26.ChoS. E.ParkH. C.2010Effect of spatial variability of cross-correlated soil properties on bearing capacity of strip footingInternational Journal for Numerical and Analytical Methods in Geomechanics341126Search in Google Scholar
Ciria Suárez, H. (2004). Computation of Upper and Lower Bounds in Limit Analysis using Second-order Cone Programming and Mesh Adaptivity [Master of Science]. Massachusetts Institute of Technology.Ciria SuárezH.2004Computation of Upper and Lower Bounds in Limit Analysis using Second-order Cone Programming and Mesh Adaptivity[Master of Science].Massachusetts Institute of TechnologySearch in Google Scholar
Dobrzanski, J., & Kawa, M. (2021). Bearing capacity of eccentrically loaded strip footing on spatially variable cohesive soil. Studia Geotechnica et Mechanica, 43(4), 425–437. https://doi.org/10.2478/sgem-2021-0035DobrzanskiJ.KawaM.2021Bearing capacity of eccentrically loaded strip footing on spatially variable cohesive soilStudia Geotechnica et Mechanica434425437https://doi.org/10.2478/sgem-2021-0035Search in Google Scholar
EN-1990, Basis of Structural Design. (2002).EN-1990, Basis of Structural Design2002Search in Google Scholar
Engwirda, D. (2014). Locally Optimal Delaunay-refinement and Optimisation-based Mesh Generation.EngwirdaD.2014Locally Optimal Delaunay-refinement and Optimisation-based Mesh GenerationSearch in Google Scholar
Fenton, G. A., & Griffiths, D. V. (2008). Risk assessment in geotechnical engineering. John Wiley & Sons.FentonG. A.GriffithsD. V.2008Risk assessment in geotechnical engineeringJohn Wiley & SonsSearch in Google Scholar
Griffiths, D. V., & Fenton, G. A. (1993). Seepage beneath water retaining structures founded on spatially random soil. Géotechnique, 43(4), 577–587. https://doi.org/10.1680/geot.1993.43.4.577GriffithsD. V.FentonG. A.1993Seepage beneath water retaining structures founded on spatially random soilGéotechnique434577587https://doi.org/10.1680/geot.1993.43.4.577Search in Google Scholar
Griffiths, D. V., & Fenton, G. A. (2004). Probabilistic Slope Stability Analysis by Finite Elements. Journal of Geotechnical and Geoenvironmental Engineering, 130(5), 507–518. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(507)GriffithsD. V.FentonG. A.2004Probabilistic Slope Stability Analysis by Finite ElementsJournal of Geotechnical and Geoenvironmental Engineering1305507518https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(507)Search in Google Scholar
Griffiths, D. V., Huang, J., & Fenton, G. A. (2009). Influence of Spatial Variability on Slope Reliability Using 2-D Random Fields. Journal of Geotechnical and Geoenvironmental Engineering, 135(10), 1367–1378. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000099GriffithsD. V.HuangJ.FentonG. A.2009Influence of Spatial Variability on Slope Reliability Using 2-D Random FieldsJournal of Geotechnical and Geoenvironmental Engineering1351013671378https://doi.org/10.1061/(ASCE)GT.1943-5606.0000099Search in Google Scholar
Hicks, M. A., & Samy, K. (2002). Influence of heterogeneity on undrained clay slope stability. Quarterly Journal of Engineering Geology and Hydrogeology, 35(1), 41–49. https://doi.org/10.1144/qjegh.35.1.41HicksM. A.SamyK.2002Influence of heterogeneity on undrained clay slope stabilityQuarterly Journal of Engineering Geology and Hydrogeology3514149https://doi.org/10.1144/qjegh.35.1.41Search in Google Scholar
Huang, L., Cheng, Y. M., Li, L., & Yu, S. (2021). Reliability and failure mechanism of a slope with non-stationarity and rotated transverse anisotropy in undrained soil strength. Computers and Geotechnics, 132. https://doi.org/10.1016/j.compgeo.2020.103970HuangL.ChengY. M.LiL.YuS.2021Reliability and failure mechanism of a slope with non-stationarity and rotated transverse anisotropy in undrained soil strengthComputers and Geotechnics132https://doi.org/10.1016/j.compgeo.2020.103970Search in Google Scholar
ISO 2394:2015, General principles on reliability for structures. (2015).ISO 2394:2015General principles on reliability for structures2015Search in Google Scholar
J. L. Doob. (1990). Stochastic processes. Wiley-Interscience.DoobJ. L.1990Stochastic processesWiley-InterscienceSearch in Google Scholar
Jerez D. J. & Chwała M. & Jensen H. A. & Beer M. (2024). Optimal borehole placement for the design of rectangular shallow foundation systems under undrained soil conditions: A stochastic framework. Reliability Engineering & System Safety. doi.org/10.1016/j.ress.2023.109771.JerezD. J.ChwałaM.JensenH. A.BeerM.2024Optimal borehole placement for the design of rectangular shallow foundation systems under undrained soil conditions: A stochastic frameworkReliability Engineering & System Safetydoi.org/10.1016/j.ress.2023.109771.Search in Google Scholar
Jha, S. K., & Ching, J. (2013). Simulating Spatial Averages of Stationary Random Field Using the Fourier Series Method. Journal of Engineering Mechanics, 139(5), 594–605. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000517JhaS. K.ChingJ.2013Simulating Spatial Averages of Stationary Random Field Using the Fourier Series MethodJournal of Engineering Mechanics1395594605https://doi.org/10.1061/(ASCE)EM.1943-7889.0000517Search in Google Scholar
Kawa, M. (2023). Zastosowania pól losowych do opisu anizotropowych ośrodków gruntowych w wybranych zagadnieniach geoinżynierii. Oficyna Wydawnicza Politechniki Wrocławskiej (in Polish).KawaM.2023Zastosowania pól losowych do opisu anizotropowych ośrodków gruntowych w wybranych zagadnieniach geoinżynieriiOficyna Wydawnicza Politechniki Wrocławskiej (in Polish)Search in Google Scholar
Kawa, M., Baginska, I., & Wyjadlowski, M. (2019). Reliability analysis of sheet pile wall in spatially variable soil including CPTu test results. Archives of civil and mechanical engineering, 19, 598–613.KawaM.BaginskaI.WyjadlowskiM.2019Reliability analysis of sheet pile wall in spatially variable soil including CPTu test resultsArchives of civil and mechanical engineering19598613Search in Google Scholar
Kawa, M., & Puła, W. (2020). 3D bearing capacity probabilistic analyses of footings on spatially variable c–φ soil. Acta Geotechnica, 15(6), 1453–1466. https://doi.org/10.1007/s11440-019-00853-3KawaM.PułaW.20203D bearing capacity probabilistic analyses of footings on spatially variable c–φ soilActa Geotechnica15614531466https://doi.org/10.1007/s11440-019-00853-3Search in Google Scholar
Kawa, M., Puła, W., & Truty, A. (2021). Probabilistic analysis of the diaphragm wall using the hardening soil-small (HSs) model. Engineering Structures, 232. https://doi.org/10.1016/j.engstruct.2021.111869KawaM.PułaW.TrutyA.2021Probabilistic analysis of the diaphragm wall using the hardening soil-small (HSs) modelEngineering Structures232https://doi.org/10.1016/j.engstruct.2021.111869Search in Google Scholar
Krabbenhoft, K., Lyamin, A. V., Hjiaj, M., & Sloan, S. W. (2005). A new discontinuous upper bound limit analysis formulation. International Journal for Numerical Methods in Engineering, 63(7), 1069–1088. https://doi.org/10.1002/nme.1314KrabbenhoftK.LyaminA. V.HjiajM.SloanS. W.2005A new discontinuous upper bound limit analysis formulationInternational Journal for Numerical Methods in Engineering63710691088https://doi.org/10.1002/nme.1314Search in Google Scholar
Kumar, V., Burman, A., Portelinha, F. H. M., Kumar, M., Burman, A., Portelinha, F. H. M., & Das, G. (2023). Influence of Variation of Soil Properties in Bearing Capacity and Settlement Analysis of a Strip Footing Using Random Finite Element Method. Civil Engineering Infrastructures Journal. https://doi.org/ DOI:10.22059/CEIJ.2023.360871.1930KumarV.BurmanA.PortelinhaF. H. M.KumarM.BurmanA.PortelinhaF. H. M.DasG.2023Influence of Variation of Soil Properties in Bearing Capacity and Settlement Analysis of a Strip Footing Using Random Finite Element MethodCivil Engineering Infrastructures Journalhttps://doi.org/ DOI:10.22059/CEIJ.2023.360871.1930Search in Google Scholar
Liu, Y., Chen, X., & Hu, M. (2022). Three-dimensional large deformation modeling of landslides in spatially variable and strain-softening soils subjected to seismic loads. Canadian Geotechnical Journal, 60(4), 426–437.LiuY.ChenX.HuM.2022Three-dimensional large deformation modeling of landslides in spatially variable and strain-softening soils subjected to seismic loadsCanadian Geotechnical Journal604426437Search in Google Scholar
Liu, X., Wang, Y., & Li, D. Q. (2019). Investigation of slope failure mode evolution during large deformation in spatially variable soils by random limit equilibrium and material point methods. Computers and Geotechnics, 111, 301–312. https://doi.org/10.1016/j.compgeo.2019.03.022LiuX.WangY.LiD. Q.2019Investigation of slope failure mode evolution during large deformation in spatially variable soils by random limit equilibrium and material point methodsComputers and Geotechnics111301312https://doi.org/10.1016/j.compgeo.2019.03.022Search in Google Scholar
Lyamin, A. V., & Sloan, S. W. (2002a). Lower bound limit analysis using non-linear programming. International Journal for Numerical Methods in Engineering, 55(5), 573–611. https://doi.org/10.1002/nme.511LyaminA. V.SloanS. W.2002aLower bound limit analysis using non-linear programmingInternational Journal for Numerical Methods in Engineering555573611https://doi.org/10.1002/nme.511Search in Google Scholar
Lyamin, A. V., & Sloan, S. W. (2002b). Upper bound limit analysis using linear finite elements and non-linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 26(2), 181–216. https://doi.org/10.1002/nag.198LyaminA. V.SloanS. W.2002bUpper bound limit analysis using linear finite elements and non-linear programmingInternational Journal for Numerical and Analytical Methods in Geomechanics262181216https://doi.org/10.1002/nag.198Search in Google Scholar
Lyamin, A. V., & Sloan, S. W. (2003). Mesh generation for lower bound limit analysis. Advances in Engineering Software, 34(6), 321–338. https://doi.org/10.1016/S0965-9978(03)00032-2LyaminA. V.SloanS. W.2003Mesh generation for lower bound limit analysisAdvances in Engineering Software346321338https://doi.org/10.1016/S0965-9978(03)00032-2Search in Google Scholar
Makrodimopoulos, A., & Martin, C. M. (2008). Upper bound limit analysis using discontinuous quadratic displacement fields. Communications in Numerical Methods in Engineering, 24(11), 911–927. https://doi.org/10.1002/cnm.998MakrodimopoulosA.MartinC. M.2008Upper bound limit analysis using discontinuous quadratic displacement fieldsCommunications in Numerical Methods in Engineering2411911927https://doi.org/10.1002/cnm.998Search in Google Scholar
Pieczyńska-Kozłowska, J. M., Puła, W., Griffiths, D. V., & Fenton, G. A. (2015). Influence of embedment, self-weight and anisotropy on bearing capacity reliability using the random finite element method. Computers and Geotechnics, 67, 229–238. https://doi.org/10.1016/j.compgeo.2015.02.013Pieczyńska-KozłowskaJ. M.PułaW.GriffithsD. V.FentonG. A.2015Influence of embedment, self-weight and anisotropy on bearing capacity reliability using the random finite element methodComputers and Geotechnics67229238https://doi.org/10.1016/j.compgeo.2015.02.013Search in Google Scholar
Podlich, N. C. (2018). The Development of Efficient Algorithms for Large-Scale Finite Element Limit Analysis [Doctor of Philosophy]. University of Newcastle.PodlichN. C.2018The Development of Efficient Algorithms for Large-Scale Finite Element Limit Analysis[Doctor of Philosophy].University of NewcastleSearch in Google Scholar
Podlich, N. C., Lyamin, A. V., & Sloan, S. W. (2014). A Comparison of Conic Programming Software for Finite Element Limit Analysis. Applied Mechanics and Materials, 553, 439–444. https://doi.org/10.4028/www.scientific.net/AMM.553.439PodlichN. C.LyaminA. V.SloanS. W.2014A Comparison of Conic Programming Software for Finite Element Limit AnalysisApplied Mechanics and Materials553439444https://doi.org/10.4028/www.scientific.net/AMM.553.439Search in Google Scholar
Puła, W., Szabowicz, H., & Kawa, M. (2022). Efficient and conservative estimation of failure probability of strip footing on spatially variable soil using random finite element limit analysis. In J. Huang, D. V., Griffiths, S.-H. Jiang, A. Giacomini, & R. Kelly (Eds.), 8th International Symposiumon Geotechnical Safety and Risk (ISGSR) (pp. 303–308). https://doi.org/10.3850/978-981-18-5182-7_04-007-cdPułaW.SzabowiczH.KawaM.2022Efficient and conservative estimation of failure probability of strip footing on spatially variable soil using random finite element limit analysisInHuangJ.GriffithsD. V.JiangS.-H.GiacominiA.KellyR.(Eds.),8th International Symposiumon Geotechnical Safety and Risk (ISGSR)303308https://doi.org/10.3850/978-981-18-5182-7_04-007-cdSearch in Google Scholar
Sert, S., Luo, Z., Xiao, J., Gong, W., & Juang, C. H. (2016). Probabilistic analysis of responses of cantilever wall-supported excavations in sands considering vertical spatial variability. Computers and Geotechnics, 75, 182–191. https://doi.org/10.1016/j.compgeo.2016.02.004SertS.LuoZ.XiaoJ.GongW.JuangC. H.2016Probabilistic analysis of responses of cantilever wall-supported excavations in sands considering vertical spatial variabilityComputers and Geotechnics75182191https://doi.org/10.1016/j.compgeo.2016.02.004Search in Google Scholar
Simões, J. T., Neves, L. C., Antão, A. N., & Guerra, N. M. C. (2014). Probabilistic analysis of bearing capacity of shallow foundations using three-dimensional limit analyses. International Journal of Computational Methods, 11(2). https://doi.org/10.1142/S0219876213420085SimõesJ. T.NevesL. C.AntãoA. N.GuerraN. M. C.2014Probabilistic analysis of bearing capacity of shallow foundations using three-dimensional limit analysesInternational Journal of Computational Methods112https://doi.org/10.1142/S0219876213420085Search in Google Scholar
Zaskórski, L., & Puła, W. (2016). Calibration of characteristic values of soil properties using the random finite element method. Archives of Civil and Mechanical Engineering, 16(1), 112–124. https://doi.org/10.1016/j.acme.2015.09.007ZaskórskiL.PułaW.2016Calibration of characteristic values of soil properties using the random finite element methodArchives of Civil and Mechanical Engineering161112124https://doi.org/10.1016/j.acme.2015.09.007Search in Google Scholar