Accès libre

Pile–Soil Interaction during Static Load Test

À propos de cet article

Citez

Figure 1:

Graphical description of the loads acting on a pile in the presented approach. D – Pile diameter [m]; h – Pile length [m]; N2 – Load acting on the head of the pile [N]; N1 – Soil reaction at the toe [N]; T – Pile skin resistance [N]; s2,1 – Settlement value of the head and base of the pile [mm]; σ1 – Stress under the base of the pile [Pa]; τ – Stress acting on the skin of the pile, representing the skin resistance [Pa]; l – Arm of the soil deformation according to Kirchhoff's principle [m].
Graphical description of the loads acting on a pile in the presented approach. D – Pile diameter [m]; h – Pile length [m]; N2 – Load acting on the head of the pile [N]; N1 – Soil reaction at the toe [N]; T – Pile skin resistance [N]; s2,1 – Settlement value of the head and base of the pile [mm]; σ1 – Stress under the base of the pile [Pa]; τ – Stress acting on the skin of the pile, representing the skin resistance [Pa]; l – Arm of the soil deformation according to Kirchhoff's principle [m].

Figure 2:

Location of a static load test project in Northern Poland, Szczecin, Leona Heyki 3 street.
Location of a static load test project in Northern Poland, Szczecin, Leona Heyki 3 street.

Figure 3:

Pile designed for testing with visible extensometers attached to the reinforcing steel while casting (image captured by the author).
Pile designed for testing with visible extensometers attached to the reinforcing steel while casting (image captured by the author).

Figure 4:

Part of the site prepared for static load testing (image captured by the author).
Part of the site prepared for static load testing (image captured by the author).

Figure 5:

Distribution of the axial force along the pile shaft and deformation of the pile shaft measured during the static load test with extensometers [36].
Distribution of the axial force along the pile shaft and deformation of the pile shaft measured during the static load test with extensometers [36].

Figure 6:

Completed static load test site ready for testing (image obtained from authors' library).
Completed static load test site ready for testing (image obtained from authors' library).

Figure 7:

CPTu investigation results for Pile 1 [27].
CPTu investigation results for Pile 1 [27].

Figure 8:

CPTu investigation results for Pile 2 [27].
CPTu investigation results for Pile 2 [27].

Figure 9:

Example of the M–K curve graph [20].
Example of the M–K curve graph [20].

Figure 10:

Least-squares graphs of the results obtained for the analyzed piles.
Least-squares graphs of the results obtained for the analyzed piles.

Figure 11:

Relationship between the load acting on the head of the pile and the shear stress at the head level (τ2) and base level (τ1) for the pile taken from Heyki 1 [by author].
Relationship between the load acting on the head of the pile and the shear stress at the head level (τ2) and base level (τ1) for the pile taken from Heyki 1 [by author].

Figure 12:

Relationship between the load acting on the head of the pile and the shear stress at the head level (τ2) and base level (τ1) for the pile taken from Heyki 2 [by author].
Relationship between the load acting on the head of the pile and the shear stress at the head level (τ2) and base level (τ1) for the pile taken from Heyki 2 [by author].

Figure 13:

Soil under and around the pile base forming a sphere, where the parameters vary significantly [22, 28].
Soil under and around the pile base forming a sphere, where the parameters vary significantly [22, 28].

Figure 14:

M–K curve and static load test results compared for Pile 1 (left) and Pile 2 (right).
M–K curve and static load test results compared for Pile 1 (left) and Pile 2 (right).

Load–settlement values obtained from the static load test; Pile Heyki 1.

N [kN] 0 145 289 432 576 720 863 1007 1150 1295 1438 1581 1726 1890
s [mm] 0,00 0,57 1,14 1,86 2,64 3,69 4,82 6,54 8,38 10,83 13,38 16,41 20,28 26,08

Load–settlement values obtained from static load test for Pile Heyki 2.

N [kN] 0 145 293 431 575 720 864 1006 1151 1294 1438 1582 1726 1896 2013 2156 2300
s [mm] 0,00 0,71 1,27 1,88 2,57 3,49 4,48 6,04 7,77 10,24 13,24 16,13 19,59 23,20 27,14 31,73 36,42

Geotechnical parameters of the soil profile [27].

qc svo ID Ic qn βq Nm Φ′ C′ Su(Cu) M0

[m] [-] [-] [MPa] [KPa] [%] [-] [MPa] [-] [-] [°] [kPa] [kPa] [MPa]
0,0
1,8 Mg(hgrcFSa) nN(Pd+H+c+ż) 2,20 35 20 - 2,19 0,02 - 29° 30′ - - 9,5
2,3 Mg(grchclSa) nN(Pg+H+c+ż) 1,30 42 - 0,54 1,27 0,01 11,1 22° 10′ 6 98 9,2
2,5 Mg(grchFSa) nN(Pd+H+c+ż) 2,20 57 15 - 2,14 0,00 - 29° - - 9,4
3,8 Or(Nm) Nm 0,45 92 - 0,50 0,38 0,04 3,7 13° 10′ 3 20 1,1
6,6 Or(Nm) Nm 0,65 117 - 0,60 0,58 0,12 5,1 15° 50′ 4 31 2,5
7,0 Or(Nmp)/HFSa Nmp/PdH 1,10 133 - 0,44 1,00 0,01 6,8 18° 50′ 5 71 7,9
8,2 FSa Pd 3,30 149 20 - 3,18 0,00 - 29° 20′ - - 14,2
8,6 FSa Pd/Ps 6,40 177 40 - 6,25 0,00 - 32° 10′ - - 28,4
11,1 FSa Pd 13,20 208 65 - 13,03 0,00 - 35° 10′ - - 64,9
11,8 FSa Pd 7,30 220 40 - 7,12 0,00 - 32° 20′ - - 32,4
12,4 saSi Πp 2,60 236 - 0,74 2,40 0,00 11,1 22° 10′ 7 171 21,8
13,3 FSa Pd 7,00 250 35 - 6,80 0,00 - 31° 50′ - - 31,1
13,8 FSa Pd 11,10 268 55 - 10,88 0,00 - 33° 50′ - - 54,6
15,2 saSi/siSa Πp/Pπ 3,40 292 - 0,82 3,17 0,00 12,2 22° 50′ 7 226 28,5
16,2 FSa/MSa Pd/Ps 14,00 320 60 - 13,74 0,00 - 34° 30′ - - 70,3
18,0 FSa Pd 7,00 342 30 - 6,73 0,00 - 31° - - 31,2
18,4 FSa Pd 10,50 353 45 - 10,22 0,00 - 33° - - 51,8
19,1 FSa/MSa Pd/Ps 15,40 400 60 - 15,08 0,00 - 34° 30′ - - 75,9

Equation (42) results, left side and right side.

side EQ. (42) Right side Eq.(42)
Pile 1 0,83 0,803
Pile 2 0,85 0,84
eISSN:
2083-831X
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics